
www.manaraa.com

Wayne State University

Wayne State University Dissertations

1-1-2014

Dual Delivery Systems Based On Polyamine
Analog Benspm As Prodrug And Gene Delivery
Vectors
Yu Zhu
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Medicinal Chemistry and Pharmaceutics Commons, and the Nanoscience and
Nanotechnology Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Zhu, Yu, "Dual Delivery Systems Based On Polyamine Analog Benspm As Prodrug And Gene Delivery Vectors" (2014). Wayne State
University Dissertations. Paper 948.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/65?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/948?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F948&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

 

 

 

 
 
 

DUAL DELIVERY SYSTEMS BASED ON POLYAMINE ANALOG BENSPM AS 
PRODRUG AND GENE DELIVERY VECTORS 

 
by 
 

YU ZHU 
 

DISSERTATION 
 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements 

for the degree of 
 

DOCTOR OF PHILOSOPHY 
 

2014 
       

MAJOR: PHARMACEUTICAL SCIENCES 
 

Approved by: 
 
   

Advisor     Date 
 
             
             
             
             
             
             
             
    



www.manaraa.com

 

 

 

ii 

ACKNOWLEDGEMENTS 

 
I would like to express my sincere thanks to my advisor, Prof. David Oupický for 

all his guidance, encouragement, and patience during all these years. For me, his 

attitude to always find an answer for the unknown and his dedication as well as his 

passion to science explain what a real scientist should be. I am very lucky to have him 

as my PhD mentor. 

My gratitude also goes to my committee members, Profs. Jing Li, Joshua 

Reineke and Randall Commissaris for their continuous guidance and suggestions 

during the course of my project. Special thanks also goes to Prof. Gensheng Wu for his 

expertise with the TNF-related apoptosis inducing ligand (TRAIL), and Prof. Jing Li for 

the help with LC-MS/MS. I would also like to thank Prof. Patrick Woster for the 

inspiration of combining BENSpm with our gene delivery systems. My deep thanks also 

goes to Prof. Hirata and Ms. Aiko Hirata for their help and training with molecular 

biology when I first started. I thank all our former and current group members, for their 

help, suggestions and encouragement throughout the years. I thank Dr. Yanmei Dong, 

for the synthesis of lipid BENSpm conjugates. My thanks also goes to Dr. Stuart 

Hazeldine, in particular, for teaching me everything about chemistry. Special thanks 

goes to Dr. Jing Li, for training me from the first day, and always being supportive from 

all aspects. I thank the Department of Pharmaceutical Sciences for offering me the 

great learning experience as a PhD student. 

Finally, I would like to thank my family for their incredible love and 

encouragement, and all my friends for their company and support. 



www.manaraa.com

 

 

 

iii 

 

TABLE OF CONTENTS 

Acknowledgements...........................................................................................................ii 

List of Tables ....................................................................................................................v 

List of Figures ..................................................................................................................vi 

List of Schemes ...............................................................................................................ix 

Chapter 1 - Introduction ................................................................................................... 1 

1.1 Gene Therapy ...................................................................................................... 1 

1.2 Combination Drug-Nucleic Acids Therapy in Cancer........................................... 8 

1.3 Delivery Strategies for Drug-Nucleic Acid Combinations................................... 12 

1.4 Polyamine Pathway in Cancer ........................................................................... 16 

1.5 Prodrugs ............................................................................................................ 34 

1.6 Conclusions ....................................................................................................... 40 

Chapter 2 - Identification of Synergistic Effect of BENSpm with Other Therapeutic 
                   Agents......................................................................................................... 42 

2.1 Introduction ........................................................................................................ 42 

2.2 Materials and Methods....................................................................................... 48 

2.3 Results and Discussion...................................................................................... 52 

2.4 Conclusions ....................................................................................................... 56 

Chapter 3 - Synthesis of Bisethylnorspermine Lipid Prodrug as Gene Delivery Vector 
                   Targeting Polyamine Metabolism in Breast Cancer.................................... 58 

3.1 Introduction ........................................................................................................ 58 



www.manaraa.com

 

 

 

iv 

3.2 Materials and Methods....................................................................................... 60 

3.3 Results and Discussion...................................................................................... 70 

3.4 Conclusions ....................................................................................................... 87 

Chapter 4 - Dendritic Polyglycerol with Polyamine Shell as a Potential Macromolecular 
                   Prodrug and Gene Delivery Vector............................................................. 88 

4.1 Introduction ........................................................................................................ 88 

4.2 Materials and Methods....................................................................................... 89 

4.3 Results and Discussion...................................................................................... 99 

4.4 Conclusions ..................................................................................................... 119 

Chapter 5 - Polycationic BENSpm Prodrug Using Self-immolative Linker as Dual 
                   Drug/Gene Delivery System ..................................................................... 121 

5.1 Introduction ...................................................................................................... 121 

5.2 Materials and Methods..................................................................................... 123 

5.3 Results and Discussion.................................................................................... 133 

5.4 Conclusions ..................................................................................................... 151 

References .................................................................................................................. 152 

Abstract........................................................................................................................ 202 

Autobiographical Statement......................................................................................... 206 

 



www.manaraa.com

 

 

 

v 

 

LIST OF TABLES 

Table 1. Co-delivery of drug-nucleic acid combinations in cancer treatment. ............... 12	
  

Table 2. Applications of BENSpm in cancer therapy. .................................................... 30	
  

Table 3. Cytotoxicity of TRAIL, BENSpm and its derivatives in MDA-MB-231. ............. 79	
  

Table 4. Hydrodynamic diameter and zeta potential of Lipo-SS-BEN/DNA (N/P 20) and  
              LipoBEN/DNA (N/P 8) complexes. .................................................................. 82 

Table 5. Characterization of the synthesized PG derivatives. ..................................... 102	
  

Table 6. Elemental analysis and calculated BENSpm content in DSS-BEN and DCC- 
              BEN ............................................................................................................... 140 



www.manaraa.com

 

 

 

vi 

 
LIST OF FIGURES 

Figure 1. Number of gene therapy clinical trials approved worldwide ............................. 2	
  

Figure 2. Distribution of gene therapy clinical trials categorized by countries, disease 
types, gene types and clinical phases .............................................................. 3	
  

Figure 3. The polyamine pathway.................................................................................. 18	
  

Figure 4. Representative inhibitors for polyamine metabolic enzymes.......................... 24	
  

Figure 5. Examples of polyamine analogues with antitumor activity ............................. 29	
  

Figure 6. Isobologram of IC50......................................................................................... 47	
  

Figure 7. 1H-NMR spectra of BENSpm (HCl salt).......................................................... 53	
  

Figure 8. Combination of Akt-2, survivin and PARP siRNAs with BENSpm in MDA-MB-
231 cells.......................................................................................................... 54	
  

Figure 9.  Synergistic activity of BENSpm and TRAIL in MDA-MB-231 cells ................ 55	
  

Figure 10. Synergistic activity of BENSpm and TRAIL in MCF-7 cells .......................... 56	
  

Figure 11. Structure of BENSpm and its lipid derivatives. ............................................. 70	
  

Figure 12. SSAT induction by BENSpm and its lipid derivatives ................................... 71	
  

Figure 13. ESI-MS and 1H NMR spectra of Lipo-SS-BEN prodrug................................ 76	
  

Figure 14. ESI-MS after reductive degradation of Lipo-SS-BEN ................................... 77	
  

Figure 15. Effect of (a) Lipo-SS-BEN or (b) LipoBEN on antiproliferative activity of 
TRAIL in MDA-MB-231 cells and the calculated CI value for combination of 
TRAIL with (c) Lipo-SS-BEN or (d) LipoBEN. ................................................. 80	
  

Figure 16. DNA condensation and reduction-triggered DNA release from Lipo-SS-BEN 
complexes....................................................................................................... 83	
  

Figure 17. Transfection activity of BENSpm and its lipid derivatives............................. 86	
  

Figure 18. Characterization of PG derivatives ............................................................. 101	
  



www.manaraa.com

 

 

 

vii 

Figure 19. 1H-NMR spectra of PG-BEN and PG-Nor................................................... 104	
  

Figure 20. Acid-base titration curves of PG derivatives............................................... 105	
  

Figure 21. Physicochemical characterization of DNA polyplexes of PG  
                 derivatives................................................................................................... 106	
  

Figure 22. AFM images of different DNA polyplexes................................................... 108	
  

Figure 23. Physicochemical characterization of siRNA polyplexes of PG  
                 derivatives................................................................................................... 110	
  

Figure 24. Agarose gel electrophoresis of siRNA polyplexes...................................... 111	
  

Figure 25. Transfection activity of polyplexes.............................................................. 113	
  

Figure 26. Toxicity of PG-BEN and PG-Nor ................................................................ 115	
  

Figure 27. Effect of PG-BEN treatment on polyamine levels in MDA-MB-231  
                  cells............................................................................................................ 117	
  

Figure 28. BENSpm content in MDA-MB-231 cell lysate (right panel) and size exclusion  
                 chromatography of PG-BEN and free BEN (left panel). ............................. 118	
  

Figure 29. 1H NMR spectra of DSS-BEN after DTT addition and degradation kinetics of  
                  DSS-BEN and DCC-BEN .......................................................................... 137	
  

Figure 30. 1H-NMR and SEC spectra of DSS-BEN (upper panel) and DCC-BEN ...... 139	
  

Figure 31. BENSpm release after 72 h treatment of DSS-BEN in different cell lines 
                 determined by HPLC analysis. ................................................................... 141	
  

Figure 32. Polyamine concentration in different cell lines determined by HPLC  

                 analysis....................................................................................................... 143	
  

Figure 33. Physiochemical characterization of DNA polyplexes of DSS-BEN and DCC- 
                 BEN polyplexes .......................................................................................... 145	
  

Figure 34. DNA release from DSS-BEN and DCC-BEN polyplexes after incubation with 
                 heparin -/+ GSH (20 mM) ........................................................................... 146	
  

Figure 35. IC50 values of DSS-BEN, DCC-BEN and PEI in various cell lines.............. 147	
  

Figure 36. Transfection activity of DSS-BEN and DCC-BEN polyplexes in different cell 



www.manaraa.com

 

 

 

viii 

                  lines. .......................................................................................................... 148	
  

Figure 37. Combination treatment of (a) BENSpm; (b) DSS-BEN and (c) DCC-BEN with 
                 TRAIL in MDA-MB-231 cells ....................................................................... 149	
  

Figure 38. Combination of BENSpm, DSS-BEN and DCC-BEN with different siRNAs in 
                 U2OS cells for 72 h..................................................................................... 150	
  



www.manaraa.com

 

 

 

ix 

 

LIST OF SCHEMES 

Scheme 1. Structures of common linkers used in prodrug conjugations and the 
proposed release mechanisms ....................................................................... 36	
  

Scheme 2. The synthesis route of BENSpm. ................................................................ 52	
  

Scheme 3. Mechanism of thiolytic activation of Lipo-SS-BEN....................................... 73	
  

Scheme 4. Synthesis of Lipo-SS-BEN prodrug. ............................................................ 74	
  

Scheme 5. Synthesis and degradation of compound 9. ................................................ 77	
  

Scheme 6. Synthesis of PG-BEN, PG-Nor .................................................................... 99	
  

Scheme 7. Synthesis of PG-NH2................................................................................. 100	
  

Scheme 8. Synthesis of DSS-BEN .............................................................................. 133	
  

Scheme 9. Synthesis of DCC-BEN.............................................................................. 134	
  

Scheme 10. Intracellular release mechanism of BENSpm from DSS-BEN................. 135	
  

 

 



www.manaraa.com

1 

 

 

 

CHAPTER 1 

INTRODUCTION 

 

Please note that part of this chapter was taken from a book chapter titled 

“Intracellular Delivery Considerations for RNAi Therapeutics” published in RNA 

Interference from Biology to Therapeutics, K. A. Howard, Ed., Springer, New York 2012 

[1]. The authors of the book chapter include Dr. Jing Li, Prof. David Oupicky and me. 

Part of this chapter was also taken from a review titled “Recent advances in delivery of 

drug-nucleic acid combinations for cancer treatment” published in the Journal of 

Controlled Release [2]. The authors of the review include Dr. Jing Li, Yan Wang, Prof. 

David Oupicky and me. All the authors agreed with including the work in this 

dissertation. 

 

1.1 Gene Therapy 

1.1.1 Overview 

The U.S. Food and Drug Administration defines gene therapy as “the use of 

genetic material to treat, cure, or prevent a disease or medical condition”. Ever since the 

first human gene transfer was approved in 1989 [3], the past two decades had 

witnessed the fast development of gene therapy from preclinical to clinical studies for a 

vast majority of diseases [4]. According to the data from Journal of Gene Medicine, 

more than 1,800 clinical trials have been approved worldwide (Figure 1). Although the 

field of gene therapy was under intense debate after the tragic death of Jesse Gelsinger 
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in 1999 in a gene therapy clinical trial, recently, the field was able to show promises with 

encouraging results in both pre-clinical and clinical studies [5].  

 

To date, clinical trials of gene therapy have been performed in more than 30 

countries, with representatives from all five continents. The gene types transferred are 

 

Figure 1. Number of gene therapy clinical trials approved worldwide, from 1989 to 
2013. (Source: The Journal of Gene Medicine) 
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most frequently antigens, cytokines, tumor suppressors and suicide genes, which are 

generally used for cancer treatment [6]. These categories contributed to the 64.2% of 

clinical trials in gene therapy against cancer (Figure 2). Other major types of genes in 

use including growth factors, which were transferred in 7.5% of clinical trials and are 

mostly aimed at cardiovascular diseases; deficiency genes were used in 7.9 % of trials, 

which are used for the treatment of monogenic diseases. In all, gene therapy holds 

promise as a revolutionary approach for the treatment of various diseases. 

 

 

1.1.2 Nucleic acids for gene therapy  

 

Figure 2. Distribution of gene therapy clinical trials categorized by countries, disease 
types, gene types and clinical phases.  
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Diverse genetic materials can be used in gene therapy, with the major types 

including nucleic acids such as DNA coding functional genes, and RNA interference. 

Plasmid DNA is a high molecular weight, double-stranded DNA construct with unique 

circular structure, which is commonly found in bacteria. It is physically separate from 

chromosomal DNA in cell nuclei, and can replicate independently. Artificial plasmids can 

be engineered as vectors carrying specific therapeutic genes for the expression in host 

cells. Examples of plasmids encoding therapeutic genes include tumor necrosis factor–

related apoptosis-inducing ligand (TRAIL) gene against renal cell carcinoma, glioma 

cells and human lung cancer cells [7-9], interleukin-12 (IL-12) gene against malignant 

melanoma, renal cell carcinoma as well as human ovarian cancer [10-13], and p53 

gene against human osteosarcoma, restenosis and endobronchial cancer [14-16]. More 

recently, minicircle DNA was developed as an effective alternative to conventional 

plasmid gene vectors. Conventional plasmid DNA contains bacterial backbone with 

resistance gene sequences and immunogenic motifs, which represent a potential risk 

for safe clinical application. The minicircle technology removes such sequences and 

demonstrates improved gene transfection efficiency [17-20]. For instance, Wu and 

coworkers investigated the antitumor effect of interferon (IFN)-γ gene on human 

nasopharyngeal carcinoma using minicircle DNA [21]. IFN-γ minicircle DNA 

demonstrated 11 times higher gene expression in nasopharyngeal carcinoma xenograft 

in mice, compared with the parental plasmids. Park et al. reported the application of 

minicircle DNA encoding adiponectin gene as a treatment of diet-induced obesity in 

mice. This strategy achieved a sufficient blood level of adiponectin in mice, whereas the 

parental plasmids showed no effect on the adiponectin expression [22]. 
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Antisense oligodeoxynucleotides (AON) are short single-stranded segments of 

DNA that upon cellular internalization can selectively hybridize with the complementary 

mRNA and induce translational arrest of the target protein [23, 24]. AON demonstrate 

promise in gene therapy towards various diseases such as inherited neurodegenerative 

diseases, dysregulation of hepatic lipid metabolism and cancer [25-27]. For example, 

treatment with antisense oligonucleotides targeting superoxide dismutase 1 significantly 

slowed disease progression in a model of amyotrophic lateral sclerosis [28]. 

Small interfering RNA (siRNA) is a class of double-stranded RNA molecules with 

20-25 nucleotides in length. siRNA conducts its silencing function in the cytoplasm by 

incorporating into RNA-induced silencing complex (RISC). RISC further pairs with the 

complementary mRNA molecule and leads to the cleavage of mRNA. The process is 

known as post-transcriptional gene silencing. Ever since the first discovery of siRNA-

mediated gene silencing in 1998 [29], siRNA has been vigorously studied in the field of 

gene therapy. Therapeutics based on siRNA have emerged for the treatment of cancer, 

infectious diseases, and other diseases associated with specific gene disorders [30]. 

Current targets in clinical trials with siRNA include apolipoprotein B (ApoB) in patients 

with hypercholesterolemia [31]; vascular endothelial growth factor (VEGF) in solid 

tumors, diabetic macular edema and macular degeneration; polo-like kinase 1 (PLK1) in 

liver tumors [32]. 

Small hairpin RNA (shRNA) is a class of RNA interference (RNAi) agents with 

tight hairpin turn that can be cleaved by Dicer enzyme to generate 21-23 nucleotides 

long siRNA. shRNA can be introduced into host cells via plasmid vectors and further 

integrated into the host genome. Unlike siRNA, shRNA is usually delivered as the 
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relative gene inserted in plasmid DNA, which undergoes transcription process to form 

shRNA [33]. In 2002, Xia and coworkers published the first use of shRNA expressed in 

viral vector to achieve endogenous gene silencing and applied the strategy to a model 

system of polyglutamine diseases and demonstrated reduced polyglutamine 

aggregation in cells [34]. More therapeutic strategies based on shRNA emerged 

recently. Examples include clinical trials of FANGTM vaccine for the treatment of solid 

tumors, which contains furin bifunctional shRNA [35]. Orally delivered shRNA against β-

catenin for the treatment of familial adenomatous polyposis is currently under Phase II 

study [36]. 

Other types of nucleic acids, such as mRNA, microRNA (miRNA) or antagomirs, 

are also under investigation as suitable components for gene therapy. Although it was 

generally accepted that mRNA is too unstable to be used for gene therapy, recent 

advances enabled the mRNA-mediated transfection and demonstrated its advantages 

as an alternative to plasmid DNA (pDNA) [37]. In addition, new members in the RNAi 

therapy include miRNA and antagomirs. The miRNA is a single strand RNA generated 

during endogenous transcription [38]. It is about 22 nucleotides in length, firstly 

transcribed in the nucleus as long primary transcripts (pri-miRNA), which can be 

processed to form mature miRNA by Dicer [39]. Depending on the level of 

complementarity with mRNA, miRNA may cause mRNA cleavage or it may bind 

imperfectly with the untranslated regions of mRNA, leading to translational repression. 

Opposing gene regulation can be achieved by antagomirs, which are single-stranded 

RNAs that can bind endogenous mature miRNA and block the function of miRNA-

mediated silencing [40, 41].  
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1.1.3 Gene delivery vectors 

Gene therapy shows promise for various diseases but its success requires 

efficient gene delivery systems. There are two major classes of delivery systems: viral 

vectors and synthetic nonviral vectors. Viral vectors that are capable of delivering 

nucleic acids into host cells can be used for gene therapy. Due to their long natural 

evolution, viruses typically exhibit higher delivery efficiency when compared with 

synthetic vectors. The most frequently used viral vectors are adenovirus (Ad), adeno-

associated virus (AAV), retrovirus (RV), and lentivirus (LV). Ad and AAV are commonly 

used to deliver genes encoding therapeutic proteins, or encoding shRNA and miRNA. 

Neither Ad nor AAV integrates into the host genome, but they maintain their transient 

forms in the nucleus [42]. These virus types are able to infect both dividing and non-

dividing cells. Both RVs and LVs can be integrated into the host genome but the major 

limitation of RV is their inability to infect non-dividing cells [43]. On the other hand, one 

advantage of LVs is that they favor integration into introns of active transcriptional units, 

which reduces the risk of insertional oncogenesis. Although viral vectors demonstrated 

effective gene delivery efficiency and are used in gene therapy clinical trials, their major 

drawbacks are safety concerns related to insertion mutagenesis and immunogenicity. 

Difficulties related to production scale-up are also a concern. 

Compared with viral vectors, the synthetic delivery systems have several 

advantages, such as easier chemical modification, easier large-scale production and 

lower biological safety concerns associated with genome manipulations and host 

immunogenicity. Most studied synthetic vectors include polycations and cationic lipids. 
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Polycations bind with negatively charged nucleic acids and self-assemble via 

electrostatic interactions into nano-sized complexes termed polyplexes. Synthetic and 

natural polycations have been explored extensively for gene delivery, including 

polyethylenimine (PEI), poly(amido amine)s (PAA), cyclodextrins, and chitosan. Cationic 

lipids are amphiphilic molecules with a hydrophobic tail of long hydrocarbon chains 

(usually two alkyl chains) and a hydrophilic head of a charged group (e.g., quaternary 

amine) [44]. Plethora of cationic lipids is commercially available. Commonly used lipids 

for gene delivery include 1,2-di-O-octadecenyl-3-trimethylammonium propane 

(DOTMA), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), 1,2-dioleoyl-3- 

phosphatidylcholine (DOPC) and cholesterol [45]. Moreover, many commercial vectors 

for gene delivery are cationic lipids, including Lipofectamine, RNAifect and 

Oligofectamine. Upon hydration, the amphiphilic cationic lipids can spontaneously form 

complexes with nucleic acid molecules termed lipoplexes, or the lipids can self-

assemble into lamellar vesicular structures as liposomes that can encapsulate pre-

condensed nucleic acids (major precondensing agents are polycationic molecules such 

as polyamines and peptides with cationic amino acids) [46-49]. 

 

1.2 Combination Drug-Nucleic Acids Therapy in Cancer 

As mentioned above, the major area of gene therapy application is cancer. 

Although gene therapy alone showed promise in treating cancer, most successful 

treatments rely on combination therapies. Heterogeneity of cancer and involvement of 

multiple pathways during tumor growth, progression and metastasis means that 

therapies that use only a single agent are unlikely to succeed. Most common types of 
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combination approaches include combinations of surgery with chemotherapy or 

radiation therapy, combinations of multiple chemotherapeutics, combinations of 

chemotherapy with immunotherapy, and more recently also drug-gene combinations 

[50]. The main rationale for combination therapies is to target different disease 

pathways to decrease the likelihood of developing drug resistance as well as to 

synergistically enhance activity of individual treatments and improve target selectivity 

[51]. Novel approaches that use drug-nucleic acid combinations in cancer treatment are 

described in the following sections. 

 

1.2.1 Combining chemotherapy with nucleic acids to overcome multidrug resistance 

(MDR) 

Drug resistance is one of the major issues causing failure and relapse of many 

tumors, which makes it a therapeutic target for combination cancer treatment. A typical 

approach to overcome multi-drug resistance (MDR) is to utilize RNAi to silence the 

expression of efflux transporter while at the same time giving an appropriate anticancer 

drug. In many cases, MDR is highly associated with P-glycoprotein (Pgp), also known 

as multidrug resistance protein 1 (MDR1). Pgp is a glycoprotein responsible for 

transporting a wide variety of substances across extra- and intracellular membranes. 

Importantly, Pgp is found overexpressed in various malignant tumor tissues, where it is 

actively involved in pumping chemotherapy drugs out of the cells. This active role in 

removal of the chemotherapeutic makes Pgp a prime target in combination approaches 

to overcome MDR. Numerous studies have shown that successful inhibition of Pgp 

expression by gene silencing with siRNA or AON dramatically increases the 
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accumulation of chemotherapy drugs in tumors and results in improved anti-tumor 

efficiency. However, efflux proteins like Pgp also play a crucial role in physiological 

regulation of endogenous substrates in healthy tissues throughout the body. It is 

important to control the silencing of Pgp expression specifically only in the tumor cells to 

avoid side effects caused by undesirable pharmacological activity in healthy organs and 

tissues [52]. Other MDR proteins such as MRP1, MRP2, BCRP and certain cell 

signaling pathways also contribute to chemoresistance. For example, in ovarian cancer, 

the Notch signaling pathway is a key regulator of tumor resistance to the treatment with 

cisplatin. Both in vivo and in vitro evidence showed that Notch 3 overexpression 

resulted in expansion of cancer stem cells and increased chemoresistance to cisplatin 

[53]. 

 

1.2.2 Combining chemotherapy with nucleic acids that promote apoptosis 

One hallmark of cancer is its ability to escape apoptosis [54]. Pre-cancerous cells 

undergoing fatal mutations are usually eliminated from the body through apoptosis, 

which is a natural self-destruct mechanism. A complex, balanced network of pro-

apoptotic and anti-apoptotic genes regulates apoptosis. However, this often becomes 

dysfunctional during tumor progression as a result of multiple gene mutations. Thus, 

delivery of gene therapy to reverse the apoptotic functionality of the mutated cells 

together with apoptosis-inducing chemotherapy is a possible strategy to avoid tumor 

recurrence and relapse.  

The tumor suppressor p53 gene is a key regulator in cell cycle and functions in 

conserving genome stability. Malkin et al. demonstrated that treatment with wild-type 
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p53 delivered via an adenovirus significantly increased the sensitivity of various 

osteosarcoma cell lines to the chemotherapeutics cisplatin and doxorubicin (DOX) [55]. 

Introducing pro-apoptotic genes to cancer cells alone with the treatment of 

chemotherapy also showed beneficial outcome. In the treatment of head and neck 

squamous cell carcinoma, Zheng et al. demonstrated that local delivery of the TRAIL 

gene by adeno-associated virus-2 (AAV-2) synergized with cisplatin chemotherapy both 

in vitro and in vivo, and cisplatin pre-treatment significantly increased TRAIL-induced 

apoptosis [56]. In addition to TRAIL gene therapy, Wagner et al. described the 

application of a combined treatment using TNF-α gene and DOX. TNF-α is a cytokine 

involved in direct killing of tumor cells and promoting tumor angiogenesis, or the 

formation of new blood vessels. Multiple injections in vivo of combined TNF-α gene and 

DOX therapy significantly delayed tumor growth in subcutaneous murine neuroblastoma 

as well as liver metastases of human LS174T colon carcinoma [57]. In addition, another 

approach to promote apoptosis is to silence anti-apoptotic genes. Examples of suitable 

targets used in combination include Bcl-2 and survivin [58-60]. Bisen et al. investigated 

the effect of cisplatin in combination with survivin siRNA on apoptosis in head and neck 

cancer. The results confirmed that halting the function of the survivin gene through LV-

mediated RNAi silencing therapy significantly increased the sensitivity of cancer cells to 

cisplatin-mediated apoptosis [59].  

 

1.2.3 Other strategies in drug and nucleic acid combinations  

In addition to chemosensitizing tumor cells using combinations of silencing 

agents and chemotherapeutics, other widely explored strategies are the combination of 
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anti-cancer drugs with nucleic acids for immunotherapy or anti-angiogenesis. For 

example, in resistant 4T1 and sensitive EMT-6 syngeneic mouse breast tumor models 

Kim et al. described the combined local interleukin-12 (IL-12) pDNA delivery with 

systemic paclitaxel (PTX) chemotherapy. This combination therapy showed improved 

inhibition of both the growth of the primary tumor as well as lung metastases compared 

with untreated and monotherapy-treated controls [61]. In another example, Huang et al. 

described co-delivery of VEGF siRNA and DOX using micelles composed of PEI grafted 

with stearic acid. Their result showed a promising effect on anti-tumor growth in a 

mouse model of human hepatocarcinoma [62]. 

 

1.3 Delivery Strategies for Drug-Nucleic Acid Combinations 

Pharmacologic effects of various drug-nucleic acid combinations and the 

interactions between the signaling pathways involved are complicated and not 

necessarily well understood, therefore makes it difficult to optimize the delivery strategy, 

timing and dosing in combination treatment. However, co-delivery of chemotherapeutics 

and therapeutic nucleic acids in a single nanocarrier may offer benefits in terms of 

convenience, vehicle uniformity, ratiometric drug loading and temporal drug release 

[63]. Examples of proven simultaneous delivered drug-nucleic acid combinations are 

summarized in Table 1. 

Table 1. Co-delivery of drug-nucleic acid combinations in cancer treatment. 

Nucleic acid Drug Target Delivery method Ref. 

Bcl-2 siRNA DOX Human hepatic cancer (in vivo) Polyplex [64] 

Bcl-2 siRNA DOX Rat glioma (in vivo) Polyplex [65] 
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DOX: doxorubicin 

PTX: paclitaxel 

 

Bcl-2 siRNA DOX Human ovarian cancer (in vitro) Silica nanoparticle  [66] 

Bcl-2 siRNA PTX Human breast cancer (in vitro) Polyplex [67] 

Bcl-2/MRP1 siRNA  Bcl-

2/MDR1 siRNA 

DOX Human MDR cancers (in vitro) Lipoplex [68] 

c-Myc /VEGF siRNA DOX Human fibrosarcoma (in vivo) Lipid-polymer nanoparticle [69] 

c-Myc siRNA DOX Human fibrosarcoma (in vivo) Lipid-polymer nanoparticle [70] 

EGFR siRNA DSGLA lipid Human lung carcinoma (in vivo) Lipid-polymer nanoparticle [71] 

EGFR siRNA SAHA Human glioblastoma (in vitro) Polyplex [72] 

Mcl1 siRNA SAHA Nasopharynx carcinoma (in vivo) Lipoplex [73] 

Mcl1 siRNA Mitoxantrone  Human nasopharynx carcinoma (in vivo) Lipoplex [74] 

Mcl1 siRNA PTX Human nasopharynx carcinoma (in vivo) Lipoplex [75] 

MDR-1 siRNA DOX Human breast carcinoma (in vivo) Polyplex [76] 

MDR1 siRNA DOX Human cervical carcinoma (in vitro) Quantum dot [77] 

MVP siRNA DOX Human breast cancer (in vivo) Polyplex [78] 

P-gp siRNA PTX Mouse mammary gland adenocarcinoma 

(in vivo) 

Polyplex [79] 

P-gp siRNA DOX Human cervix carcinoma (in vitro) Silica nanoparticle  [80] 

Plk1 siRNA PTX Human breast carcinoma (in vivo) Polyplex [81] 

Survivin shRNA PTX Human ovarian cancer (in vivo) Polymer micelle [82] 

TRAIL plasmid DOX Human liver cancer (in vivo) Polyplex [83] 

TRAIL plasmid DOX Human brain gliomas (in vivo) polyplex [84] 

VEGF siRNA PTX Human prostate adenocarcinoma (in vitro) Polyplex [85] 

VEGF siRNA DOX  Human hepatoma (in vivo) Polymeric micelle [62] 
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An interesting type of the co-delivery vectors emerging in recent years is the 

carrier doubles as a nucleic acid delivery vector and a prodrug that can enhance the 

therapeutic outcome of nucleic acids. A growing number of examples of such carriers 

successfully combine the delivery function of vectors with pharmacologic activity. 

Pluronic block copolymers are probably the best-known and most-investigated example 

of such carriers. These copolymers chemosensitize MDR cancer cells through multiple 

mechanisms, including inhibition of the Pgp drug efflux system [86], depletion of cellular 

ATP pools [87], and dysfunction of mitochondria [88]. While most of the available 

reports address the use of Pluronics for delivery of chemotherapeutics, importantly, the 

copolymers can be also used to deliver nucleic acids. Namely, it has been 

demonstrated that Pluronics can activate the nuclear factor kappa-light-chain-enhancer 

of activated B cells (NFκB), which is a transcription factor that enhances gene 

expression [89]. By introducing Pluronics into existing polyplexes, the gene delivery 

efficiency can be significantly improved, without causing cytotoxicity, as a result of 

increased cell uptake and nuclear transport of pDNA.  

In most cases, dual-function carriers are rationally designed for specific 

applications. For example, Huang et al. developed a novel cationic lipid named DSGLA 

that is capable of delivering siRNA while simultaneously down-regulating the 

phosphorylated extracellular signal-regulated kinase (pERK) to enhance anti-cancer 

activity of the delivered siRNA [71]. The lipid, which contains guanidinyl and lysyl 

headgroups, has been shown to efficiently down-regulate pERK in H460 human lung 

carcinoma cells and to induce their apoptosis. Furthermore, a significant enhancement 

in tumor growth inhibition was observed in a mouse model of lung tumors after 
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intravenous (i.v.) administration of DSGLA/siRNA lipoplexes containing EGFR siRNA. 

In addition to the use of lipoplexes as a dual-function vector, Rice et al. designed 

a type of novel cationic polypeptide capable of incorporating peptides with an intrinsic 

proteasome inhibitory function in order to improve transfection activity of plasmid DNA 

[90]. Proteasomes are important cellular enzymes responsible for the degradation of a 

variety of proteins. Inhibition of proteasomes has been shown to enhance transfection 

efficiency. Interestingly, in human hepatocellular carcinoma HepG2 cells, Rice et al. 

incorporated a tripeptide aldehyde proteasome inhibitor into the C-terminal end of a 

cationic gene delivery peptide (Cys-Trp-Lys18), and the resulting carrier showed 

elevated gene expression. Rice et al. note that using peptides with a proteasome 

inhibitory function as the carrier for pDNA delivery is more beneficial than concurrent 

treatment with pDNA polyplexes and free proteasome inhibitors. Thus, introducing 

intrinsic proteasome inhibitory activity has shown potential to boost the efficiency of anti-

cancer gene therapy. 

We have recently reported synthesis of biodegradable polycations that can 

function dually as gene delivery vectors and as antagonists of the CXCR4 chemokine 

receptor [91]. As a result of CXCR4 inhibition, the synthesized polycations were able to 

block the invasion of cancer cells, while simultaneously mediating efficient transfection 

in vitro. Evidence shows that the chemokine receptor CXCR4 and its cognate ligand 

SDF-1 (CXCL12) play critical roles in tumor invasion and metastasis. Likewise, many 

clinical studies have revealed that CXCR4-positive tumors metastasize to distant sites 

with high levels of SDF-1. Blocking the CXCR4/SDF-1 axis either by CXCR4 

antagonists or by siRNA silencing of the CXCR4 gene has been shown to be capable of 
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preventing metastasis [92]. Such dual-function delivery vectors are expected to 

enhance anti-metastatic efficacy in a variety of cancer gene therapy methods. 

 

1.4 Polyamine Pathway in Cancer 

Years of research in the field of cancer treatment promoted the elucidation of the 

molecular basis of cancer, and led to the identification of valuable therapeutic targets 

[93]. One typical example is the polyamine pathway, which is generally up-regulated in 

cancer and therefore holds promise for the chemotherapy and chemoprevention. 

 

1.4.1 Natural polyamines and their biological functions 

Natural polyamines, including spermine (SPM), spermidine (SPD) and their 

diamine precursor putrescine (PUT), are alkylamines that exist in all eukaryotes [94-96]. 

In 1678, SPM and SPD were first discovered by Leeuwenhoek in human semen [97]. 

Later in 1885, Brieger reported the discovery of PUT [98]. These polyamines are 

essential for cell growth, differentiation, survival and mammalian development [99]. In 

general, the intracellular concentration of all polyamines is in millimolar range and most 

of the polyamines exist in the form bound to nucleic acids (DNA, RNA) or other 

negatively charged molecules, such as proteins and phospholipids [100, 101]. The 

majority of polyamines exists as polyamine-RNA complexes, thus influencing protein 

synthesis [102]. It is generally believed that polyamines exhibit its main function in 

supporting cell growth and cell survival at the transcriptional, translational and post-

translational levels, through the regulation of gene expression, free-radical scavenging, 

ion-channel regulation and maintenance of chromatin structure [103]. The dynamic 
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balancing of polyamine levels inside the cells is important for maintaining the healthy 

status of the cells, and the intracellular polyamine concentration is strictly regulated 

through the biosynthesis, catabolism pathway, cell uptake and efflux [94]. Dysregulation 

of polyamine levels is usually associated with various diseases, as the polyamine 

depletion leads to inhibition of cell growth and accelerates aging [104], while increased 

level of polyamines is associated with hyper-proliferative diseases such as cancer [105]. 
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1.4.2 Polyamine biosynthesis 

Polyamines can be imported from extracellular resources, such as directly from 

food, or generated by gut bacteria [106], although the mechanism of cellular polyamine 

 

Figure 3. The polyamine pathway. Ornithine, the precursor for polyamine synthesis, 
is the product of arginine generated from urea cycle. Ornithine is converted to PUT by 
ornithine decarboxylase (ODC). PUT is then converted to higher molecular weight 
SPD by addition of propyl amine. The process is catalyzed by SPD synthase. SPD 
can be further converted to SPM by SPM synthase. Notably, the product of propyl 
amine involved in the synthesis of SPD and SPM is generated from the 
decarboxylation of S-adenosylmethionine (AdoMet) by S-adenosylmethionine 
decarboxylase (AdoMetDC). Catabolism of SPD and SPM is mediated by three major 
enzymes: spermine/spermidine N1-acetyltransferase (SSAT); polyamine oxidase 
(APAO) and spermine oxidase (SMO). SMO can oxidize SPM to form SPD; SSAT 
catalyzes the acetylation of SPM and SPD to form the N1-acetyl-SPM or N1-acetyl-
SPD, respectively. Acetylated polyamine product can be further exported out of the 
cell, or it can be oxidized by APAO to form the precursor polyamine (PUT or SPD). 
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uptake is not yet fully characterized. On the other hand, endogenous polyamines are 

generated from the biosynthesis pathway. As shown in Figure 3, the first rate-limiting 

enzyme in the polyamine biosynthesis pathway is ODC, which catalyzes the conversion 

of ornithine to PUT. Ornithine, the substrate for ODC is an amino acid intermediate in 

the urea cycle generated from arginine by arginase [107]. In mammals, ODC has a very 

short half-life around 10 min, and it is one of the best-characterized proteins that is 

subjected to ubiquitin-independent degradation process [96]. The degradation of ODC is 

mediated by ODC antizyme, and the process is negatively regulated by the feedback 

loop of polyamine products [108]. 

The second rate-limiting step in the polyamine synthesis is the decarboxylation of 

AdoMet by AdoMetDC to generate the amino propyl donor (decarboxylated AdoMet) for 

the synthesis of SPD and SPM. SPD is synthesized from PUT by incorporating the 

aminopropyl moiety from decarboxylated AdoMet, and the reaction is catalyzed by SPD 

synthase.  SPM is synthesized in presence of SPM synthase by aminopropylation to the 

aminobutyl end of SPD [109]. 

  

1.4.3 Polyamine catabolism 

Several enzymes, such as SMO, SSAT and APAO, mediate the catabolism of 

polyamines. SSAT is a rate-limiting enzyme in the catabolic pathway. It catalyzes the 

N1-acetylation of SPD and SPM, by transferring the acetyl group from acetyl coenzyme 

A. SSAT is a highly inducible enzyme, and its expression can be regulated by a variety 

of stimuli such as polyamine levels, hormones, toxins, drugs, cytokines and stress 

pathways [110]. Oppositely, APAO is constitutively expressed in most tissues with its 
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high activity and slow turnover rate [111].  SMO specifically oxidizes SPM. It is also 

highly inducible by a variety of stress stimuli, and is often up-regulated during cellular 

stress such as inflammation, cell differentiation and DNA damage [112]. 

SPD and SPM can be acetylated by SSAT and further exported out of the cells. 

Alternatively, the acetylated products from SPD and SPM are also subjected to 

oxidation by APAO, which leads to the formation of lower molecular weight polyamines 

(PUT or SPD), as well as the product of 3-acetylaminopropanal and hydrogen peroxide 

(H2O2). In contrast to the function of APAO, which oxidizes the acetylated product of 

SPD and SPM, SMO catalyzes the oxidation of unsubstituted SPM to SPD, and 

releases 3-aminopropanal and H2O2. It is also worth noting that reaction with APAO and 

SMO in the polyamine pathway causes oxidative stress to the cell by generating H2O2 

and aldehydes. The production of reactive oxygen species (ROS) together with 

increases in acetylated polyamines and the enzyme activities are reported to be 

responsible for apoptosis and ROS damage to the host cells [113, 114].  

  

1.4.4 Polyamine regulation in cancer 

Considering the essential role of polyamine pathway in cell growth and 

development, it is not surprising to find that occurrence of cancer usually correlates with 

dysregulation of polyamine pathway. Indeed, higher expression of natural polyamines, 

elevated activity of the polyamine synthesis enzymes or reduced activity of polyamine 

catabolism are normally found in various cancers, including breast, prostate, renal, 

colorectal, pancreatic, hepatocellular carcinoma, lung and brain cancers [115]. 

Moreover, SPD and SPM are acetylated when they are accumulated in excess amount 
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during carcinogenesis, therefore the urinary acetylated SPD and SPM has become a 

sensitive marker for human cancers [100].   

In 1968, Russell et al. first showed that increased ODC activity was associated 

with sarcomas and hepatomas [116]. ODC is a transcriptional target of the oncogene c-

Myc and Ras [117], and it is shown to be overexpressed in gastric cancer [118], breast 

cancer [119], lymphoma [120], non-small-cell lung cancer [121] and prostate cancer 

[122]. Deng et al. examined the expression of ODC in breast cancer tissues and four 

breast cancer cell lines, and found that ODC was upregulated in all breast cancer 

tissues and cell lines compared with non-tumor tissue and normal breast epithelial cells 

[123]. They also demonstrated that down-regulation of ODC expression with antisense 

ODC resulted in suppression of cancer proliferation and cell cycle arrest. More 

significantly, O’Brien and coworkers were able to demonstrate that overexpression of 

ODC is sufficient for the promotion of skin tumor [124]. They developed the ODC 

transgenic mice model for skin tumorigenesis experiment. Results showed much higher 

sensitivity of the transgenic mice to develop skin tumors with a single administration of 

carcinogen, compared with the normal control mice.  Similarly, AdoMetDC, the second 

rate-limiting enzyme in the biosynthesis pathway of polyamine has also been reported 

to be up-regulated in certain types of cancer [125]. Ravanko et al. proved that 

AdoMetDC alone is sufficient for the transformation of NIH 3T3 cells into highly invasive 

tumors in nude mice [126]. Furthermore, the inhibition of AdoMetDC by small molecule 

inhibitor SAM486A led to the suppression of breast cancer invasiveness both in vitro 

and in vivo [127]. Other enzymes involved in the polyamine biosynthesis such as SPM 
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and SPD synthases are constitutively expressed in the cells, and are considered to be 

less relevant to the tumorigenesis in human [128]. 

Additionally, dysregulation of enzymes in polyamine catabolism also contributes 

to the tumorigenesis. Increased activity of SMO is often observed in inflammation-

associated tumors. In this case, production of ROS by SMO is directly linked with DNA 

damage and activation of inflammation cytokines. Chronic inflammation with sustained 

elevation of ROS produced by SMO increases the risk of tumorigenesis [112]. For 

example, development of prostate cancer is considered to be associated with 

inflammation [129]. This statement is supported by Goodwin et al. that significantly 

higher expression of SMO is observed in tissue samples of prostate cancer patients 

[130]. Another interesting example is that certain infection events that lead to the up-

regulation of SMO activity will later contribute to the carcinogenesis. Xu et al. reported 

that Helicobacter pylori, a human gastric pathogen, could up-regulate the enzyme 

activity of SMO, thus causing the production of ROS and consequently, result in 

mutagenic DNA damage that may contribute to the development of gastric cancer [131]. 

It is also worth mentioning that SMO seems to play an opposite role in the development 

of breast cancer. Report showed that SMO activity is much lower in the tumor tissue 

samples than in the normal tissue samples from breast cancer patients [132]. This result 

is in good correspondence with another report that decreased APAO activity was 

observed in breast cancer tissues [133]. Possible explanation for the decreased activity 

of polyamine catabolic enzymes in breast cancer is that lower expression of SMO and 

APAO leads to reduced amount of ROS in the local tumor tissue, thus promotes the 

survival of tumor cells [112]. The role of SSAT enzyme in tumorigenesis is also 
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complicated and requires more investigation. Mouse model with systemic 

overexpression of SSAT demonstrated resistance to the development of skin cancer 

after being challenged by carcinogen [134]. However, local induction of SSAT 

expression in the mice skin resulted in accelerated tumor progression [135]. Elevated 

SSAT was observed in tumor tissue from breast cancer patients [133]. In contrast, in the 

case of human colon cancer or other gastrointestinal cancers that are associated with 

Ki-ras oncogene, SSAT activity was suppressed by Ki-ras, which resulted in 

suppression of polyamine catabolism and elevated polyamine content [136].  

In all, dysregulation of enzymes involved in the polyamine pathway results in 

accumulation of polyamines, which promotes tumorigenesis and tumor progression. 

Elevated polyamine levels are reported to enhance the malignant potential of cancer 

cells and decrease anti-tumor immunity [137]. Alteration in the polyamine pathway is 

also associated with poor prognosis of certain cancers [138]. Therefore, targeting the 

polyamine pathway holds great potential in cancer chemotherapy and chemoprevention 

[139]. 

 

1.4.5 Targeting polyamine pathway in cancer  

Realizing the importance of polyamine pathway in cancer, extensive effort has 

been made to develop therapeutic agents against the polyamine metabolism. Earlier 

work starting from 1970s was mainly focusing on developing inhibitors of polyamine 

biosynthesis enzymes. Structures of representative inhibitors are shown in Figure 4. 

Methylglyoxal bis(guanylhydrazone) (MGBG), a drug used for treatment of leukemia, 

was demonstrated to be a competitive inhibitor for AdoMetDC by Williams-Ashman et 
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al. in 1972 [140]. Treatment with MGBG leads to the depletion of SPM and SPD, 

however, accumulation of excess PUT was observed [141]. Although in vitro results 

showed that MGBG treatment led to cell growth inhibition, clinical use of this drug is 

limited by the significant toxicity to mitochondria [142]. Based on the structure of MGBG, 

researchers later developed other AdoMetDC inhibitors, such as SAM486A, with 

reduced mitochondrial toxicity [143]. Unfortunately, no clinical benefit was shown in 

Phase I and Phase II studies [144, 145]. 

 

Figure 4. Representative inhibitors for polyamine metabolic enzymes. DFMO is an 
irreversible inhibitor for ODC; MGBG is a competitive inhibitor for AdoMetDC; SAM486A 
is a competitive inhibitor for AdoMetDC with lower mitochondrial toxicity than MGBG; 
MDL 72527 is an enzyme-activated inhibitor for APAO, which can also inhibit SMO. 
Modified from [101].  
 

One of the most well-known inhibitors for polyamine biosynthesis is 

difluoromethylornithine (DFMO), an irreversible inhibitor of ODC that binds to the active 

site of this enzyme [146, 147]. Results from in vitro studies showed that treatment of 
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cells with DFMO led to depletion of PUT and SPD, but the level of SPM often remained 

less affected [148]. Generally, DFMO leads to cytostatic growth inhibition, rather than 

cytotoxic effect towards cancer cells. Clinical trials demonstrated that DFMO was 

ineffective as a single chemotherapy agent against several tumor models, including 

gliomas, melanomas, breast and prostate cancers [101]. Possible explanation for the 

disappointing result is that DFMO is poorly transported into the cell thus limiting the 

ODC inhibition and polyamine depletion effect. Additionally, activation of compensatory 

mechanism in polyamine pathway and incomplete depletion of SPM after the treatment 

with DFMO may also compromise the treatment outcome [149]. ODC inhibitors with 

higher potency were also synthesized, however, no significant advantage in clinical 

studies was shown so far [150]. Furthermore, inhibitors targeting the SPM and SPD 

synthase were also explored as chemotherapy agent. For example, S-adenosyl-3-thio-

1,8-diaminooctane was synthesized as a specific inhibitor of SPD synthase. A similar 

analogue, S-adenosyl-1,12-diamino-3-thio-9-azadodecane was developed as inhibitor 

for SPM synthase. However, both inhibitors demonstrated limited effect on cell growth 

inhibition [151, 152]. Also worth mentioning are inhibitors developed for targeting other 

enzymes such as APAO. Although APAO was thought to be constitutively expressed in 

the cells, thus having less importance as a therapeutic target, recent developments in 

inhibiting APAO activity showed promising cell killing effect towards cancer cells [149]. 

The most successful inhibitor for APAO is N1,N4-bis(2,3-butadienyl)-1,4-butanediamine 

(MDL 72527), which is also considered an inhibitor for SMO. MDL 72527 has shown 

toxic effect towards leukemia cells and appears to be effective when combined with 

DFMO in in vivo cancer models [128, 149]. 
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As discussed above, initial efforts of developing anti-cancer reagent based on the 

inhibition of polyamine biosynthesis enzymes yielded limited clinical success. The 

ineffectiveness of the inhibitors targeting biosynthesis of polyamines is partially due to 

the incomplete depletion of all the natural polyamines. In recent years, more emphasis 

has been put on developing polyamine analogues that are capable of competing with 

natural polyamines for the transport, biosynthesis and catabolism. Theoretically, ideal 

polyamine analogues would possess the following features: (i) capable of competing 

with natural polyamines for the polyamine transport system thus reducing the import of 

natural polyamines; (ii) despite the structural similarity with natural polyamines, the 

analogues should not have the same biological functions as natural polyamines; (iii) 

intracellular accumulation of the polyamine analogues should act as a feedback to the 

polyamine metabolism, resulting in down-regulation of polyamine biosynthesis and up-

regulation of catabolism [103].  

Synthesis of polyamine analogues that met the above criteria was first attempted 

by Bergeron and coworkers in 1988 [153]. Since then, considerable amount of 

polyamine analogues mimicking the structures of SPD and SPM was synthesized and 

tested over the past 20 years. The analogues can be grouped into the following 

categories based on the chemical structure: symmetrically substituted bis(alkyl) 

polyamine analogues; asymmetrically substituted analogues; conformationally restricted 

analogues; oligoamines and macrocyclic analogues [154]. Representative examples of 

polyamine analogues are shown in Figure 5. Among the most successful of the 

developed polyamine analogues is N1,N11–bisethylnorspermine (BENSpm). BENSpm 

has shown promising antitumor activity against a wide range of cancers, including 
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melanomas, ovarian, breast, and pancreatic cancers [155-158]. BENSpm induces 

SSAT, down-regulates ODC and AdoMetDC [159], and ultimately causes cell growth 

inhibition and apoptosis [160-162]. The mechanism of action as well as preclinical and 

clinical outcomes of BENSpm will be discussed in detail in the following section. In 

addition, asymmetrical polyamine analogues N1-propargyl-N11-ethylnorspermine 

(PENSpm) and N1-cyclopropyl-methyl-N11-ethylnorspermine (CPENSpm) possess 

similar backbone as BENSpm and also showed significant anti-proliferation activity and 

SSAT induction. The similar antitumor effect of asymmetrical analogues with BENSpm 

demonstrates that active functional moieties could be linked to the same polyamine 

backbone, which may offer potential targeting capability [103]. Synthesis of 

conformational restricted analogues also generated encouraging results. Most 

promising agents in this group are CGC-11047 and CGC-11093, which are derivatives 

of N1,N12-bisethylspermine (BESpm) and N1,N14-bisethylhomospermine (BEHSpm), 

respectively. CGC-11047 and CGC-11093 showed increased anti-proliferative activity 

and reduced nonspecific toxicity compared with the parent compounds [101]. Notably, 

despite the structural similarities, CGC-11047 and CGC-11093 showed discrepancy in 

the profile of regulating polyamine catabolic enzymes. CGC-11047 significantly induced 

SSAT and SMO, whereas CGC-11093 showed little effect on the expression of both 

enzymes [103]. The fact that both compounds are active anti-cancer agents implied the 

complexity of the mechanism for polyamine regulation and indicated the diverse 

influences of polyamine analogues on polyamine pathway, other than affecting the 

enzyme activities.   
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 Synthesis of oligoamines as effective antitumor agents is guided by the 

hypothesis that increased number of amines in the polyamine analogue contributes to 

increased affinity for DNA. The interactions between the polyamine analogue and 

nucleic acids in the cancer cells are then responsible for the antiproliferative effect 

[163]. For example, CGC-11144 is a representative oligoamine with significant 

antitumor activity. CGC-11144 demonstrated growth inhibition in a panel of prostate 

cancer cells, and showed antitumor effect in vivo in a breast cancer model [164]. CGC-

11144 showed broad effect on cellular functions. Treatment with CGC-11144 not only 

leads to decrease in all three natural polyamines and inhibition of ODC activity, but also 

results in multiple genetic changes such as activation of caspase 3 and suppression of 

the expression of estrogen receptor [165]. Another unique class of polyamine analogues 

is macrocyclic polyamine. Unlike other polyamine analogues that generally target the 

polyamine pathways, macrocyclic polyamines exhibit its antitumor function through 

other mechanisms such as DNA cleavage and depletion of ATP. Representative 

molecule from this subset of compounds, such as CGC-11199, demonstrated antitumor 

activity in human prostate cancer. However, the mechanism of action is considered less 

relevant with the polyamine regulation [166].  
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1.4.6 BENSpm as anticancer drug targeting polyamine pathway 

As discussed above, BENSpm is one of the most successful antitumor agents 

developed in the field of polyamine research. BENSpm mimics the structure of SPM, but 

differs from SPM in that the terminal primary amines of BENSpm are modified with ethyl 

groups, thus preventing the oxidation by multiple oxidases such as APAO. BENSpm 

exhibits multiple functions in the regulation of intracellular polyamines. It is shown that 

BENSpm can highly induce the activity of catabolic enzyme SSAT. It also induces SMO 

and downregulates both ODC and AdoMetDC [164]. Unlike single enzyme inhibitors, 

BENSpm demonstrates complete depletion of all three natural polyamines and shows 

 

 

Figure 5. Examples of polyamine analogues with antitumor activity. (a) Symmetrically 
substituted polyamine analogues; (b) asymmetrically substituted polyamines; (c) 
conformational restricted polyamine analogues; (d) oligoamines and (e) macrocyclic 
polyamine. 



www.manaraa.com

30 

 

 

significant antitumor activity in vitro [165]. Using a transgenic model of primary fibroblast 

derived from transgenic mice overexpressing SSAT, Alhonen et al. demonstrated that 

the growth inhibition effect of BENSpm was largely dependent on the depletion of 

polyamine pools, and the massive induction of SSAT activity mainly happened at the 

post-transcription level [167, 168]. It was also reported that BENSpm is a potent inducer 

of SMO, especially in non-small-cell lung cancers [169]. Investigations in BENSpm-

treated SK-MEL-28 human melanoma cells revealed that BENSpm caused depletion of 

intracellular polyamine pools and triggered G1 phase cell cycle arrest. Besides the 

effect on cell growth inhibition, BENSpm also induced apoptosis in the melanoma cells 

by activating the mitogen-activated protein kinase (MAPK) pathway, inducing cellular 

oxidative stress and activating the mitochondrial apoptotic pathway [113, 170]. BENSpm 

is also reported to exhibit gene regulation functions. Shah et al showed that BENSpm 

downregulated the gene expression of two transcription factors: NFκB and estrogen 

receptor-alpha in breast cancer cells, and resulted in apoptosis in the tested MCF-7 

breast cancer cell line [171].  

 

Table 2.  Applications of BENSpm in cancer therapy. 

Treatment Model Cancer type Effect Ref. 

BENSpm in vitro Breast tissue explants ↑SSAT [172] 

BENSpm in vitro L56Br-C1 breast cancer cells ↑SSAT; Apoptosis; ↓ Cell 
proliferation; ↑caspase-3 and 9 

[173] 

BENSpm in vitro MALME-3M melanoma cells ↑p53-p21WAF1/CIP1-Rb; G1 cell 
cycle arrest 

[158, 
174] 

BENSpm in vitro MCF-7 breast cancer cells G1 cell cycle arrest; ↑p53 and p21 
expression; Cell growth inhibition and 
apoptosis 

[160] 

BENSpm in vitro MCF-7, L56Br-C1 and HCC1937 breast Polyamine depletion; DNA strand [175] 
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cancer cells breakage 

BENSpm in vitro MDA-MB-231, Hs578t, MCF-7, T47D 
breast cancer cells 

↑SSAT and SMO; Growth inhibition; 
↓ODC; Polyamine depletion 

[176] 

BENSpm in vitro Panc-1 and BxPC-3 pancreatic cancer 
cells and xenograft mice model 

↑SSAT; ↓ODC and AdoMetDC; 
↓polyamine pool; antiproliferation; in 
vivo antitumor effect 

[177, 
178] 

BENSpm in vitro SH-SY5Y neuroblastoma cells Polyamine depletion; cell growth 
inhibition and apoptosis; ↑survivin  

[179] 

BENSpm in vitro SK-BR-3, MCF-7, L56Br-C1 and HCC1937 
breast cancer cells 

Polyamine depletion; Cell growth 
inhibition; Regulation of cell cycle 

[180] 

BENSpm in vitro SK-MEL-28 melanoma cells ↑SSAT and ROS; Apoptosis; 
↑caspase-3 and 9; cytochrome c 
release 

[113] 

BENSpm in vitro SK-MEL-28, MALME-3M, A375 and LOX 
melanoma cells 

↑SSAT; Apoptosis and growth 
inhibition; ↓survivin and ML-IAP 
proteins; Activation of MAPK 
pathway  

[170, 
181] 

BENSpm in vitro U87, LN229 glioblastoma cells ↑SSAT; ↑Cell apoptosis and 
detachment; Inhibition of mTOR-
mediated protein synthesis  

[182, 
183] 

BENSpm in vitro and 
in vivo 

AT3.1, AT6.1, AT6.3, DU145, DuPro-1 and 
TSU-Pr1 prostate cancer cells; DU145, 
DuPro-1 and PC-3 xenograft mouse model 

Cytotoxicity; Tumor growth inhibition [184] 

BENSpm in vitro and 
in vivo 

PC-3, TSU-pr1, DU-145, and JCA-1 
prostate cancer cells; DU-145 xenograft 
mouse model 

↑SSAT; ↓ODC; ↓Polyamines; Tumor 
growth inhibition 

[185] 

BENSpm in vitro and 
in vivo 

U87, LN229 glioblastoma cells; U87 
intracerebral mouse model 

↑SSAT and ROS; Prolonged survival 
of tumor-bearing mice 

[186] 

BENSpm in vivo A121 ovarian carcinoma, A549 lung 
cancer, MALME-3M melanoma, and SH-1 
melanoma xenografts mice model 

Tumor regression [187, 
188] 

BENSpm in vivo BL13 bladder carcinoma xenograft mouse 
model 

Tumor regression 

 

[189] 

BENSpm in vivo PANUT-3 and MALME-3M melanoma 
xenograft mice model 

↑SSAT in tumor tissue; polyamine 
depletion in tumor; antitumor activity 

[190] 

BENSpm in vivo Transgenic mouse model with neu/erb-B2 
overexpression 

↑SSAT; ↓number of tumor; ↓tumor 
volume 

[191] 

BENSpm Phase I 
trial 

Advanced solid tumors patients Central nervous system toxicity [192, 
193] 

BENSpm Phase I 
trial 

Hepatocellular carcinoma patients Dose well tolerated in patients; Lack 
of efficiency 

[194] 

BENSpm Phase I 
trial 

Non-small cell lung cancer patients MTD was 185 mg/m2 for 5 days; 
Gastrointestinal toxicity 

[195] 

BENSpm Phase II 
trial 

Metastatic breast cancer patients Dose well tolerated in patients; Lack 
of efficiency 

[196] 

BENSpm and 
2ME 

in vitro MCF-7 breast cancer cells Synergism; Polyamine depletion; Cell 
apoptosis 

[197] 

BENSpm with 
5-FU 

in vitro HCT116 colon carcinoma cells ↑SSAT; ↑Apoptosis; ↓Polyamines; 
Synergism 

[198] 

BENSpm with in vitro MCF-7, Hs578t, T47D and MDA-MB-231 Strong synergism; ↑SSAT and SMO; [199] 
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5-FU or PTX breast cancer cells Cytotoxicity 

BENSpm with 
cisplatin 

in vitro and 
in vivo 

L1210 leukemia cells and B16F1 
melanoma cells; L1210 and B16F10 mice 
model 

Cytotoxicity; ↑ Lifespan [200] 

BENSpm with 
OXP 

in vitro A2780 ovarian cancer cells ↑Strong synergism; ↑SSAT; 
Polyamine depletion; Cell growth 
inhibtion and cytotoxicity 

[201, 
202] 

BENSpm with 
OXP and 5-FU 

in vitro HCT-116 colorectal cancer cells Polyamine depletion; ↑SSAT and 
SMO; ↓cell resistance 

[203, 
204] 

5-FU: 5-fluorouracil 

PTX: paclitaxel 

OXP: oxaliplatin 

2ME: 2-Methoxyestradiol 

 

BENSpm demonstrated promising antitumor effect in both in vitro and in vivo 

models of a variety of cancers. Application of BENSpm in preclinical and clinical cancer 

therapy is summarized in Table 2. For in vitro studies, BENSpm showed promising 

outcome as antitumor agent towards glioblastoma U87 and LN229 cells [182], 

neuroblastoma SH-SY5Y cells, breast cancer MDA-MB-231 and MCF-7 cells [176], SK-

MEL-28 human melanoma cells [113] and human prostate cancer PC-3, TSU-pr1, DU-

145, and JCA-1cell lines [185]. More significantly, several studies pointed out the 

effectiveness of BENSpm for in vivo antitumor therapy. For example, BENSpm 

significantly inhibited tumor growth of breast cancer MDA-MB-231 xenografts mouse 

model, following the treatment schedule of 5 times each week (100 mg/kg for each 

dose) for constitutively 4 weeks [199]. In a FVB/NTgN transgenic mouse model with 

neu/erb-B2 oncogene overexpression, treatment with 20 mg/kg BENSpm once a week 

for 10 weeks resulted in a 40% reduction in the average number of tumors per mouse 

[191]. Similarly, significant antitumor efficacy was also observed in in vivo mouse 

models including bladder BL13 carcinoma, SH-1 melanoma, MALME-3M melanoma, 
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A549 lung adenocarcinoma, A121 ovarian carcinoma, pancreatic Panc-1 and BxPC-3 

adenocarcinoma xenografts [178, 187, 189].  

Because of the promising results from in vitro and in vivo studies, BENSpm was 

evaluated as a single agent with antitumor activity in phase I and phase II clinical trials. 

In a phase I clinical trial, BENSpm was tested in patients with advanced hepatocellular 

carcinoma [194]. Although the drug was relatively well tolerated at 75 mg/m2 by i.v. 

injection every other weekday for two weeks in a 28-day cycle, BENSpm failed to 

demonstrated effectiveness against the disease and was not recommended for further 

evaluation as a monotherapy agent. In another phase I study, BENSpm was 

administered in patients with non-small cell lung cancer but, again, no significant 

disease response was observed [195]. Another phase I trial was designed to determine 

the maximum tolerated dose (MTD) and dose-limiting toxicities of BENSpm. The results 

demonstrated significant central nervous system toxicity at dose levels above 94 

mg/m2/day, and BENSpm was not recommended for phase II study [192]. The only 

reported phase II study used BENSpm in patients with metastatic breast cancer. Again, 

the results yielded no clinical activity, with all patients showing disease progression by 4 

months [196].  

Although as a single agent BENSpm did not show satisfactory clinical outcome, 

recent studies demonstrated that it could be beneficial to combine BENSpm with other 

chemotherapy drugs. For example, BENSpm act synergistically in combination with 

platinum drugs, such as oxaliplatin and cisplatin in A2780 human ovarian carcinoma 

cells [202]. More importantly, BENSpm was tested in combination with six standard 

chemotherapy agents in a panel of four human breast cancer cell lines. The most 
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promising combinations were BENSpm with 5-fluorouracil or paclitaxel in human breast 

cancer cell lines MDA-MB-231 and MCF-7 [199]. In all, encouraging preclinical results 

support the continuing evaluation of BENSpm in combination chemotherapy and 

chemoprevention.  

 

1.5 Prodrugs 

1.5.1 Definition and advantages 

Depending on the final application, modifications of the parent drug molecules to 

produce corresponding prodrugs may offer additional advantages over the free drug 

alone. Prodrugs are chemically modified drug molecules that are inactive or less active 

than the parent drug. However, after in vivo administration, prodrugs will undergo 

enzymatic metabolism or chemical transformation to release the active parent drug and 

exert its desired pharmacological effect [205]. Prodrug strategy can be used to improve 

the drug absorption, distribution, metabolism and elimination (ADME). In chemotherapy, 

designing prodrugs also helps to improve the tumor selectivity and to minimize the off-

target toxicity [206]. In general, a prodrug is composed of three components: (1) the 

active drug molecule; (2) degradable linker bridging the drug and the rest part of the 

prodrug named “promoiety”; (3) the promoiety that enabled the prodrug with additional 

properties such as improved solubility, targeting and decreased toxicity [206]. 

In the design of a successful prodrug, the chemical linker needs to be carefully 

selected. Theoretically, the linker should self-immolate or cleave at the pharmacological 

site of action [207]. The linker should be either enzymatically degradable or stimuli-

responsive to the disease-related environment such as changes in pH and redox 
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potential. Commonly used linkers include esters, carbamates, carbonates, and amides. 

More recently, a variety of self-immolative linkers were developed with improved 

degradation kinetics. Common prodrug linkers and proposed degradation mechanisms 

are summarized in Scheme 1. 

Ester prodrugs are the most widely used because esters are degraded easily by 

ubiquitous plasma esterases or chemical hydrolysis. Synthesis of ester prodrugs is 

straightforward, with the required carboxylic acid and hydroxyl groups often existing in 

drug backbones. Ester prodrugs can be readily cleaved in the blood, liver and other 

organs to release the functional drug molecule [208]. The most important esterases are 

carboxylesterase, acetylcholinesterase, butyrylcholinesterase, paraoxonase, and 

arylesterase [208]. These enzymes are widely distributed throughout the body, thus 

rendering the ester prodrug quite labile in vivo. One major problem associated with the 

ester prodrug is the difficulty in controlling the site of prodrug conversion. Because of 

the ubiquitous existence of esterases, it is hard to predict the rate and the site of 

hydrolysis, and further, the pharmacological outcomes. Carbonates and carbamates are 

enzymatically more stable compared with hydroxyl esters. The degradation of these 

types of prodrugs is mediated by selective carboxylesterase. 

Another type of commonly used prodrug strategy is amide. Although amide bond 

can be hydrolyzed by carboxylesterases, peptidases or proteases [205], it is generally 

more stable than the corresponding esters and carbamates. In fact, amide prodrugs 

exhibit high enzymatic stability in vivo, with the observation that amide prodrugs can be 

stable in the plasma for several days [207]. Therefore, the application of amide prodrugs 

is limited to designing specific enzyme-cleavable amides for improved targeting [209]. 
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Scheme 1. Structures of common linkers used in prodrug conjugations and the 
proposed release mechanisms (R1 and R2 stand for either the drug molecule or the 
promoiety). Modified from [210-212]. 
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In addition, other types of linkers include hydrazones, oximes, and disulfides. 

Each linker endows the prodrug with different environmental responsive properties. For 

example, hydrazone prodrugs are pH sensitive, with the degradation that takes place at 

pH < 5. Thus this type of prodrug is expected to be cleaved in the acidic endosome and 

lysosome compartments [213]. Disulfide prodrugs are redox responsive molecules and 

the reduction-triggered drug release is favored in tumor tissues with elevated levels of 

intracellular reducing agents like glutathione (GSH), thus improving the targeting in 

chemotherapy [214]. 

 

1.5.2 Prodrugs of amine drugs 

Although prodrug strategy is widely used and accounts for approximately 10% of 

all the marketed medicine globally [215], application of such strategy in amine drugs is 

limited by the high stability of amide bonds. As we discussed above in the polyamine 

pathway section, polyamine analogues like BENSpm offer great therapeutic potential in 

cancer treatment. Conversion of this type of amine drug molecules into prodrug would 

be beneficial in the following aspects: (1) masking the amine groups, which are highly 

ionized at physiological conditions improves the lipophilicity of the drug and promotes 

the passive diffusion of the drug through membrane barriers; (2) temporary protection of 

the amine functional groups reduces the tendency to undergo first-pass metabolism; (3) 

careful selection of the promoiety of the prodrug enables the tissue targeting of amine 

drug, especially for targeting the tumor site.  

Besides the amide and carbamate bond, self-immolative linker strategies are 

utilized in designing amine prodrugs with improved degradation profile. One interesting 
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approach is to use 4-azidobenzylcarbamate as the modification strategy for amine 

drugs [216]. The 4-azidobenzylcarbamate was shown to undergo rapid reduction in the 

presence of reducing molecule such as dithiothreitol (DTT), and the reduction product 4-

aminobenzylcarbamate triggers immediate cascade degradation to release the 

functional amine drug [210]. Additionally, disulfide reduction-triggered self-immolative 

systems are also under vigorous investigation. Valhov et al. reported the disulfide-

triggered linker system based on dithiobenzyl carbamate (Scheme 1). Following the 

disulfide reduction by GSH, this linker system will undergo thioquinone-methide 1,6-

elimination and further release the amine free drug [211]. Another interesting approach 

is to use simple dithioethyl carbamate linker that can undergo 2-mercaptoethanol 1,2-

elimination [212]. Activation of this prodrug contains two steps, first is the reduction of 

disulfide, and then the electronic rearrangement of the reduction product resulting in 

self-fragmentation of the remaining linker and release of the active amine drug. During 

the 1,2-elimination process, an intermediate of thiirane is generated from intramolecular 

cyclization (Scheme 1), which is further hydrolyzed to form the 2-mercaptoethanol [211]. 

In all, this type of self-immolative linker offers feasible solution for designing amine 

prodrugs. Furthermore, advanced modifications such as to incorporate space hindering 

moieties to the linker systems allow for easy control of the drug release rate. 

 

1.5.3 Polymeric prodrug conjugates in chemotherapy 

Depending on the types of promoieties, prodrugs can be categorized as targeting 

ligand-conjugated prodrugs, stimuli-responsive prodrugs, double prodrugs, membrane 

transporter-conjugated prodrugs, and polymeric prodrugs [206, 207, 217]. Among these, 
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polymeric prodrugs draw increasing attention in the field of chemotherapy. In general, 

the most prominent advantage of polymeric prodrugs is that they allow for passive 

targeting to the tumor site. Due to the rapid growth and elevated angiogenesis of the 

tumor tissue, the blood vessels associated with the tumor are usually poorly developed 

and thus facilitate leakage of macromolecular drugs to the tumor tissue. In addition, 

tumor tissues usually lack effective lymphatic drainage systems, thus increasing the 

accumulation of macromolecules in the tumor site. This phenomenon is known as the 

enhanced permeability and retention (EPR) effect [218]. One successful prodrug 

designed to utilize this advantage was PK1: N-(2-hydroxypropyl)methacrylamide 

(HPMA)-DOX prodrug with a peptide linker [219]. Phase I clinical trial showed that the 

polymeric prodrug can significantly decrease the DOX dose-limiting toxicities, with no 

sign of cardiotoxicity observed in patients at the DOX equivalent dose of 1680 mg/m2. In 

another study, the influence of molecular weight of HPMA in the HPMA-DOX conjugates 

was evaluated. Results showed that DOX prodrug with higher molecular weight HPMA 

(~1000 kDa) has 28 fold longer blood half-life, with concomitant enhancement in tumor 

accumulation and significant higher efficacy in tumor inhibition, compared with the free 

DOX [220].   

Polymeric prodrug conjugates are generally much larger in size than the parent 

drug, which leads to reduced urinary excretion, prolonged circulation half-life and 

modified biodistribution profile. The most commonly used polymer for this purpose is 

poly(ethylene glycol) (PEG). PEG is a water-soluble, nontoxic polymer that is approved 

by FDA in several products for in vivo administration [221]. Several PEGylated prodrugs 

are already on the market and more are undergoing clinical trials. NKTR-102, for 
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instance, is a PEGylated irinotecan prodrug that is currently in phase 3 clinical trial for 

patients with metastatic breast cancer. NKTR-102 demonstrated significant 

enhancement in antitumor activity and reduced hematopoietic toxicity compared with 

parent irinotecan [222].  

More complex systems, such as liposome-encapsulated polymeric prodrugs, 

self-assembled polymer-drug nanoparticles and micelles, are also developed with 

increased half-life and promising antitumor activity [223, 224]. One representative 

example is the design of folate receptor-targeted lipid nanoparticle formulation for PTX-

cholesterol prodrug [225]. PTX has poor aqueous solubility and limited lipid solubility. 

Cholesterol was first conjugated to PTX to form the prodrug with improved lipophilicity. 

The prodrug was then incorporated into a lipid nanoparticle, which also contained folate 

as a tumor targeting ligand. This PTX nanoparticle showed prolonged systemic 

circulation and exhibited excellent colloidal stability. Treatment with this novel 

formulation in mouse xenograft tumor model showed significantly greater tumor growth 

inhibition and prolonged animal survival. In all, incorporating polymer based prodrug 

strategy into chemotherapy offers great potential for cancer treatment. 

  

1.6 Conclusions 

As described above, gene therapy in combination with chemotherapy has shown 

significant promise in cancer treatment. However, current chemo drugs used in drug-

nucleic acids combinations are merely limited to several candidates such as PTX and 

DOX. To further utilize the possible synergism by targeting various cellular pathways in 

cancer, identification of novel drug-gene pairs is of great need. Considering the 
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importance of polyamine pathway in cancer development, it is of great interest to 

identify effective drug targets in this pathway for combination therapy. Identification of 

synergistic therapeutic agents will be discussed in Chapter 2. 

Furthermore, from the point of view of delivery systems, advances in the field of 

drug-nucleic acid combination require efficient delivery strategies for both chemotherapy 

drug and nucleic acids. It would be beneficial to design dual delivery systems for such 

applications. Considering the effectiveness of polymer-based delivery systems in 

nucleic acid delivery, and the possible advantages of designing polymeric prodrugs, it is 

favorable to design a dual delivery system that combines the prodrug functionality and 

gene delivery capability. The design of such dual delivery platforms will be the major 

topic of Chapter 3, 4 and 5. 
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CHAPTER 2 

IDENTIFICATION OF SYNERGISTIC EFFECT OF BENSPM WITH OTHER 

THERAPEUTIC AGENTS  

 

2.1 Introduction 

As discussed in Chapter 1, BENSpm is one of the most successful polyamine 

analogues developed to target polyamine pathway [188, 226]. The general mechanism 

of action of BENSpm is to up-regulate metabolism enzymes SSAT and SMO, while at 

the same time, down-regulate biosynthesis enzyme ODC. BENSpm depletes all natural 

polyamines (SPM, SPD and PUT) and leads to apoptosis and cell growth inhibition in a 

wide range of cancers [158, 176, 177, 180, 182]. Recent advances in polyamine 

research reveal that BENSpm can act synergistically with various chemotherapy drugs 

[197, 227], thus providing the rationale for us to expand the knowledge of BENSpm 

synergism with other kinds of therapeutic agents. 

 

2.1.1. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) 

One promising candidate in combination cancer therapy is called TRAIL, which is 

a therapeutic protein from the TNF family. In human, there are five TRAIL receptors: 

DR4, DR5, DcR1, DcR2 and osteoprotegerin (OPG) [228]. DR4 and DR5 are the death 

receptors capable of inducing apoptosis, while the other three are decoy receptors to 

antagonize apoptosis by competing for ligand binding. TRAIL is attractive in cancer 

treatment because transformed cells are generally more sensitive to TRAIL-induced 
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apoptosis, compared with normal cells. One possible explanation for TRAIL selectivity is 

that TRAIL's death receptors (DR4 and DR5) are mainly expressed in transformed cells 

while its decoy receptors (DcR1, DcR2 and OPG) are expressed in normal cells [229], 

which renders the cancer cells more sensitive to TRAIL treatment. Recombinant human 

TRAIL protein (rhTRAIL) was tested as a single anti-cancer agent in phase I clinical trial 

in advanced cancer patients and demonstrated no apparent toxicity [230]. In another 

phase I clinical trial, rhTRAIL was tested in combination with rituximab, an anti-CD20 

antibody, in non-Hodgkin lymphoma patients, which yielded 2 complete and 1 partial 

response in patients [231, 232].  Although a recent phase II study demonstrated 

unsatisfactory outcome in non-small-cell lung cancer patients by combination treatment 

of rhTRAIL with three different chemotherapy drugs (paclitaxel, carboplatin and 

bevacizumab), most recent preclinical and clinical studies of TRAIL are still focusing on 

combination strategies [231]. Preclinical studies revealed that some cancer cells are 

able to gain resistance to TRAIL after repeated exposure [233]. Therefore it would be 

more efficient to administer TRAlL in combination with other chemotherapy agents, 

which may sensitize the cells to TRAIL treatment and minimize the possibility of 

resistance. Although it has been reported that combining TRAIL with various drugs such 

as kinase inhibitors, histone deacetylase inhibitors and genotoxic drugs is beneficial 

[234], combination of TRAIL with agents targeting polyamine pathway has never been 

explored. 

 

2.1.2. RNAi targets 

RNAi targets are also being extensively studied in combination therapy. We are 
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mainly focusing on three popular RNAi targets, Akt-2, Poly (ADP-ribose) polymerase 

(PARP) and survivin, due to their active role in cancer. Akt-2 gene is known as a 

putative oncogene encoding a serine/threonine-protein kinase. It belongs to the 

PI3K/AKT/mTOR signaling pathway and plays an important role in balancing cell 

survival and apoptosis. Reports showed that this gene is amplified in human breast 

cancer cells, human ductal pancreatic cancers and human ovarian carcinoma cell lines 

[235-238]. Overexpression of Akt-2 is associated with up-regulation of metastasis in 

breast cancer [239, 240]. Therefore Akt-2 is expected to be a good target for RNAi 

therapy, especially in the treatment of metastatic cancer cells with Akt-2 

overexpression. PARP is a protein involved in DNA repair process. It helps to maintain 

cell survival and overexpression of PARP is observed in different cancers such as 

breast cancer, ovarian cancer, colon cancer and melanoma [241]. Inhibition of PARP 

using either siRNA or small molecule inhibitors has shown promising therapeutic effect 

for breast/ovarian cancer treatment [242-245], thus rendered PARP as a promising 

therapeutic target. Survivin is known to negatively control cell apoptosis pathway by 

inhibiting caspase activation. It is highly expressed in different cancer cells such as 

breast cancer and colon cancer [246, 247]. Silencing of survivin gene by RNAi is 

reported to effectively suppress tumor growth [248, 249]. To date, all the three targets 

are being vigorously investigated in combination with chemotherapy drugs [250-255], 

thus attracts our attention to test them in combination with polyamine analogue 

BENSpm. 

 

2.1.3. Evaluation of combination effect 
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In order to evaluate the combination effect of BENSpm with the above-mentioned 

therapeutic agents, it is necessary to use a suitable statistical method. We employed 

the Chou-Talalay method for quantification of synergism [256, 257]. This method is 

based on the median-effect equation, which is a unified general theory to describe the 

dose-effect relationships: 

  

fa
fu
= D

Dm

⎛

⎝⎜
⎞

⎠⎟

m

    (1) 

Where fa and fu are the fractions of cell population that are affected or unaffected, 

respectively. Therefore, (fa + fu) equals 1 by definition. D is the dose used to achieve the 

certain effect, and Dm is the required dose to achieve median effect (IC50 in the case of 

cell killing). Depending on the value of m, the median-effect equation described various 

relationships between dose and response: m = 1 indicates hyperbolic dose response; m 

> 1 indicates sigmoidal and m < 1 indicates flat sigmoidal dose response curve [258].  

When applied to multiple drugs, for example, the combinations of two drugs (D1 

and D2) with mutually exclusive drug effect, the drug-effect equation can be derived in 

the following form:   
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Where (fa)1,2 is the fraction of population effect in combination of the two drugs;  (fa)1 and 

(fa)2 are the fractions of affected cell population in the presence of single drug D1 and 

D2, respectively. Detailed description of how the equation was derived was published 

by Chou et al. in 1981 [259].  Based on this equation, Chou and Talalay later introduced 
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the combination index (CI) for quantitative evaluation of synergism between two drugs, 

where the CI value was defined as:  

   
CI =

D( )1
Dx( )1

+
D( )2

Dx( )2   (3) 

The value of (Dx)1 and (Dx)2 indicates the doses of drug D1 or D2 alone to achieve a 

certain effect x, respectively. (D)1 and (D)2 are the doses of drug D1 and D2 in 

combination to achieve the same effect. CI < 1, = 1, and > 1 indicate synergism, 

additive effect, and antagonism, respectively. The isobologram, a 2-dimensional 

diagram showing varying concentrations of two drugs that resulted in constant effect, is 

usually used to demonstrate the combination effect (Figure 6a) [260]. To achieve a 

certain cell killing effect, for example 50% cell killing, doses of drug D1 and D2 used in 

combination can be plotted on the isobologram as a point (x,y), where the x and y-

coordinates indicate the respective doses of both drugs. When single drug is used, the 

doses can be plotted on the axes where y = (IC50)1 and x = (IC50)2. The line connecting 

these two points is the line of additivity. Synergism, additive effect, or antagonism is 

indicated when the doses used in combination (x,y) are located below, on, or above the 

line, respectively. Normalizing the x- and y-axis by dividing the value of drug D1 and D2 

doses in combination by the constant of single drug dose to achieve the same effect 

generates the normalized isobologram, where the sum of the x and y-coordinates 

indicates the CI value (Figure 6b) [261]. It can be observed from this graph that smaller 

CI value indicates stronger synergism. The opposite applies to antagonism, where the 

larger the CI value is, the stronger antagonism is indicated. In fact, CI value can be 

categorized as follows: CI < 0.1 very strong synergism; 0.1-0.3 strong synergism; 0.3-
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0.7 synergism; 0.7-0.9 moderate/slight synergism; 0.9-1.1 additive; 1.1-1.45 

slight/moderate antagonism; 1.45-3.3 antagonism; 3.3-10 strong antagonism; CI > 10 

very strong antagonism [261]. In addition to CI, another important parameter that can be 

obtained from the median effect/CI model is the dose-reduction index (DRI), which is 

defined as:  

  
DRI( )1 =

Dx( )1
D( )1  (4) 

DRI indicates how many fold the dose of each drug in combination can be reduced, 

compared with the doses of each drug alone [261]. In summary, CI and DRI values 

allow the quantitative determination of synergistic effect between two agents. This 

model will be used in our study of agents that synergize with BENSpm in cancer 

therapy.  

 

Figure 6. Isobologram of IC50. (a) A typical isobologram for two drugs with the doses 
indicated at x- and y-axis. (b) Normalized isobologram of two drugs with the doses 
normalized as the ratio compared with IC50 of single drugs. Modified from [261]. 
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2.2 Materials and Methods 

2.2.1 Materials 

Trypsin-like enzyme (TrypLE Express) was purchased from Gibco (Invitrogen, 

Carlsbad, CA). Fetal bovine serum (FBS), Dulbecco’s phosphate buffered saline (PBS), 

RPMI 1640 Medium and Penicillin-Streptomycin were purchased from Thermo Scientific 

(Logan, UT). Recombinant human TRAIL/Apo2L protein was purchased from 

PeproTech (Rocky Hill, NJ). Negative control siRNA (ON-TARGET plus Non-targeting 

siRNA #1) was purchased from Dharmacon (Lafayette, CO). SignalSilence® siRNAs: 

Akt-2, survivin, and PARP with the corresponding antibodies: Akt-2 rabbit mAb, survivin 

mouse mAb and PARP rabbit mAb were from Cell Signaling Technology (Beverly, MA). 

Lipofectamine™ RNAiMAX transfection reagent was purchased from Invitrogen (Grand 

Island, NY). N,N'-Bis(3-aminopropyl)-1,3-propanediamine (norspermine) and di-tert-

butyl dicarbonate (Boc2O) were from Alfa Aesar (Ward Hill, MA). Triethylamine (TEA) 

was purchased from Acros Organic (Fair Lawn, NJ). Sodium hydride (NaH, 60% 

suspension in oil) and magnesium sulfate (MgSO4) were from Sigma-Aldrich (St. Louis, 

MO). All other reagents and chemicals were obtained from Fisher Scientific or VWR 

International unless otherwise noted.  

 

2.2.2 Synthesis of BENSpm 

1H NMR spectra were recorded on Mercury-400 MHz Spectrometer and chemical 

shifts (δ) were expressed in ppm. BENSpm was synthesized following published 

procedure via three step reaction [155]: 
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Boc-protected norspermine. Briefly, norspermine (6.16 g, 32.7 mmol) and TEA 

(16.6 g, 101.2 g/mol, 164 mmol) were dissolved in 200 mL methanol. Boc2O (32.3 g, 

148 mmol) was dissolved in 80 mL methanol in dropping funnel and then add to the 

solution of norspermine and TEA as the rate of 1 drop/sec. Reaction was kept overnight 

in water bath at room temperature. Thin layer chromatography (TLC) was used to 

monitor the reaction till completion (hexane: ethyl acetate = 2: 1, Rf = 1/3). Methanol 

was then completely removed in vacuo. Product was further run through silica gel 

column for purification (hexane: ethyl acetate = 3: 1, column size = 1000 mL, yield = 

95%).  

Alkylation of Boc-protected norspermine. Boc-protected norspermine (19.26 g, 33 

mmol) and iodoethane (20.4 g, 10.5 mL, 131 mmol) were dissolved in dry DMF/THF (1: 

4, 350 mL), to which solution NaH (4.8 g, 198 mmol, equals to 8 g 60% oil dispersion) 

was carefully added. Reaction was kept in ice bath during NaH addition and then moved 

to room temperature and stirred overnight. TLC was used to verify the completion of 

reaction (hexane: ethyl acetate = 2: 1, Rf = 0.4). Water was then added to the reaction 

mixture dropwise to consume the excess of NaH (50 mL DW). The reaction mixture was 

then extracted with hexane. Hexane layer was then washed with saturated sodium 

chloride (140 mL) and dried with MgSO4. Solution was concentrated on rotary 

evaporator and purified by silica gel column (hexane: ethyl acetate = 3: 1, column size = 

1000 mL) to give the Boc-protected BENSpm. 

Boc deprotection. Boc-protected BENSpm (20.6 g, 32 mmol, 640 g/mol) was 

dissolved in 200 mL isopropanol. HCl solution in isopropanol (6 N HCl, 26 mL) was 

added. The reaction mixture was refluxed overnight. White solid formed during the 
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reaction. The reaction mixture was then kept at -20 °C to facilitate the precipitation. The 

solid was then filtered and dried in vacuum. Solid was suspended in 150 mL methanol 

with 13 mL HCl (6 N in isopropanol) added. The mixture was refluxed for an additional 6 

h and the solid was filtered and dried to give BENSpm (HCl salt, 390 g/mol, 11.47g, 

yield 91.9%): NMR (400 MHz, D2O) δ 1.28 (t, 6H), 2.07-2.18 (m, 6H), 3.09-3.21 (m, 

16H). 

 

2.2.3 Cell culture 

MCF-7 human breast adenocarcinoma cells were cultured in RPMI medium with 

10% FBS. MDA-MB-231 human breast cancer cells were cultured in RPMI with 10% 

FBS and 1% penicillin/streptomycin. All cells were cultured at 37 °C in incubator with 

5% CO2. 

 

2.2.4 Transfection of siRNAs and Western blotting analysis 

Transfection was done using Lipofectamine™ RNAiMAX following 

manufacturer’s instructions. Briefly, MDA-MB-231 cells were seeded in 6-well plate at a 

density of 300,000 cells/well, and were allowed to attach overnight. For each well, 

appropriate amount of siRNA (36 pmol, final concentration 10 nM) was diluted in 300 µL 

RPMI (without FBS), and in another tube, 6 µL of Lipofectamine™ RNAiMAX was 

diluted in 300 µL RPMI (without FBS). The two solutions were then mixed and incubated 

at room temperature for 20 min to allow lipoplexes formation. The lipoplexes were 

added dropwise onto the cells (600 µL lipoplexes solution to 3 mL medium per well). 
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After 48 h incubation, cells were lysed and diluted with 4× NuPAGE® LDS sample buffer 

(Invitrogen). Collected cell lysates were then homogenized by sonication and the 

supernatants were loaded for polyacrylamide gel electrophoresis (PAGE) and 

electroblotted to nitrocellulose using the Mini Trans-Blot® system (Bio-Rad), as 

previously described [262]. Blots were developed using Immobilon Western 

Chemiluminescent HRP Substrate (Millipore) and were imaged using FUJIFILM 

Luminescence Image Analyzer LAS-1000plus. 

 

2.2.5 Cytotoxicity assay 

MDA-MB-231 cells were treated with increasing concentration of TRAIL, 

BENSpm, or BENSpm in combinations with Akt-2, survivin and PARP siRNAs for a 

required time length for the drug action. Concentrations of siRNAs were 10 nM in each 

well, which was delivered with Lipofectamine™ RNAiMAX using the same formulation 

as for the Western blot assay. For the combination of BENSpm and TRAIL, MDA-MB-

231 and MCF-7 cells were incubated in 200 µL medium per well in 96-well plate with 

increasing concentration of BENSpm, TRAIL or their combinations. Medium was 

replaced once at 48 h with fresh medium containing the same concentration of the 

respective agents.  

At the end of the treatment, drug-containing medium was aspirated and replaced 

by a mixture of 100 µL serum-free media and 20 µL of MTS reagent (CellTiter 96® 

AQueous Non-Radioactive Cell Proliferation Assay, Promega). After 2 h incubation, the 

absorbance was measured at a wavelength of 490 nm using Synergy 2 Microplate 

Reader (BioTek). The relative cell viability (%) was calculated as [A]sample/[A]untreated × 
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100%. The IC50 were calculated as the drug concentration that inhibits growth of 50% of 

cells relative to untreated cells using GraphPad Prism [263].  

 

2.2.6 Analysis of synergistic effect of BENSpm and TRAIL combination 

The median effect/CI model was used to determine synergy of the combination 

treatment of BENSpm with TRAIL. The fraction of killed cells (fa) was determined by 

MTS assay described above (fa= 1- cell viability%). Results were analyzed by 

CompuSyn software (ComboSyn, Inc. Paramus, NJ) for the CI and DRI values to 

quantitatively determine the synergism of BENSpm and TRAIL combination [261].  

 

2.3 Results and Discussion 

 

2.3.1 Synthesis of BENSpm 

 

Scheme 2. The synthesis route of BENSpm. 
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BENSpm was synthesized by selective alkylation of Boc-protected norspermine 

at the primary amine ends (Scheme 2). The structure of BENSpm and complete 

deprotection of Boc were confirmed by 1H NMR (Figure 7). Compared with the parent 

norspermine, the primary amines are alkylated with ethyl groups in BENSpm. This 

prevents oxidation by multiple amine oxidases in the cells and prolongs the duration of 

BENSpm activity in targeting the polyamine pathway in cells [103]. The synthesized 

BENSpm (HCl salt) was used for the following studies. 

 

2.3.2 Combination effect of BENSpm and TRAIL with siRNAs 

Western blot analysis verified that transfection of Akt-2, survivin and PARP 

siRNAs all resulted in significant knockdown of the corresponding proteins in MDA-MB-

231 cells after 48 h incubation (Figure 8a). Since the required time length for BENSpm 

drug action is 120 h [199], cytotoxicity of BENSpm in combination with siRNAs was 

tested in the 120 h time frame. As shown in Figure 8b, where the points on y-axis 

 

Figure 7. 1H-NMR spectra of BENSpm (HCl salt). 
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indicated the cell viability followed siRNAs treatment alone (as concentration of 

BENSpm equals zero), 120 h transfection with siRNAs resulted in significant cell killing. 

However, the cytotoxicity was predominantly associated with the delivery system, since 

significant cytotoxicity was observed not only in functional siRNAs treat cells, but also in 

control siRNA (ctrl siRNA) group (cell viability of 52% in ctrl siRNA group vs. ~33-36% in 

functional siRNAs groups).  Cytotoxicity of combination of BENSpm with the functional 

siRNAs was not significantly different from BENSpm and ctrl siRNA co-treatment. It 

could be concluded that, although the pro-survival proteins Akt-2, survivin and PARP 

can be efficiently depleted by siRNA transfection, it did not necessarily sensitize the 

breast cancer cells towards BENSpm-related growth inhibition. The somewhat 

disappointing result from siRNA combinations demonstrated the complexity of drug-

combination effect, and synergism need to be experimentally identified on a case-by-

case basis.  

 

2.3.3 Combination effect of BENSpm with TRAIL 

 

Figure 8. Combination of Akt-2, survivin and PARP siRNAs with BENSpm in MDA-
MB-231 cells. (a) Western blot analysis of MDA-MB-231 cells treated with 10 nM 
survivin, PARP or Akt-2 siRNAs. β-actin is used as a loading control.(b) Combination 
of siRNAs with BENSpm for 120 h in MDA-MB-231 cells. Results were expressed as 
mean cell viability% ± SD (n=4). 
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In order to determine the combination effect of BENSpm and TRAIL, a constant 

molar ratio of BENSpm and TRAIL which equals to the ratio of their IC50 

(BENSpm:TRAIL 14,700:1) was used in combination for MDA-MB-231 cells. For MCF-7 

cell line, which is more resistant to TRAIL treatment, a constant concentration of TRAIL 

(35 ng/mL) was used in combination. Four to six doses were used in serial dilutions 

covering the activity range of BENSpm and TRAIL. The CI value and DRI value were 

calculated by the Chou-Talalay method using CompuSyn software [264]. As shown in 

Figure 9, we first tested whether the parent BENSpm enhances activity of the TRAIL 

protein in triple-negative breast cancer cells MDA-MB-231. The observed CI values 

were <0.04 across the entire studied fa range, indicating a very strong synergy between 

BENSpm and TRAIL. We then expand the combination to another type of breast cancer 

cell, the estrogen-dependent MCF-7 cell line. As shown in Figure 10, less potent but still 

strong synergy between BENSpm and TRAIL was found also in the MCF-7 cell.  

 

 

Figure 9.  Synergistic activity of BENSpm and TRAIL in MDA-MB-231 cells. (a) 
Cytotoxicity of increasing concentration of TRAIL, BENSpm or their combination for 
120 h. Cell viability was measured by MTS assay (n=3-4). (b) CI value and DRI 
calculated for each dose of BENSpm and TRAIL in combination using CalcuSyn 
software. 
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In addition, the calculated DRIs range for TRAIL treatment were 59-283 and 2.5-

6.3 respectively, in MDA-MB-231 cells and MCF-7 cells. The result that ~280-fold dose 

reduction for TRAIL protein could be achieved when combined with BENSpm in MDA-

MB-231 cells is especially promising for the application of nonviral gene delivery. As 

gene delivery is hampered by the low transfection efficiency, this finding provides the 

rationale for designing BENSpm based gene delivery system to deliver therapeutic 

genes (e.g., TRAIL), and enhanced treatment outcome is expected through the 

combination. 

 

2.4 Conclusions 

As a proof-of-concept, we test the combination effect of BENSpm with several 

therapeutic agents. Firstly, combination of BENSpm with functional siRNAs did not 

show beneficial outcome over the BENSpm combination with negative control siRNA, 

indicating no synergistic effect of BENSpm combined siRNA treatment in breast cancer 

MDA-MB-231 cells. However, we later identified strong synergistic combination of 

 

Figure 10. Synergistic activity of BENSpm and TRAIL in MCF-7 cells. (a) Cytotoxicity 
of increasing concentration of BENSpm alone or in combination with TRAIL (35 
ng/ml) was measured by MTS assay (n=3-4). (b) CI value and DRI calculated for 
each dose of BENSpm and TRAIL in combination using CalcuSyn software. 
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BENSpm with potential therapeutic gene product TRAIL. For both cell lines tested, 

which are representative estrogen-dependent and triple-negative breast cancers, 

BENSpm and TRAIL combination demonstrated strong synergism and offers potential 

advantages to reduce the required treatment dose. Because the synergism is obtained 

regardless of the cell line sensitivity to TRAIL, this combination strategy offers additional 

benefits to overcome drug resistance in chemotherapy. In all, this finding inspired us for 

the attempt to develop BENSpm-based delivery system for the co-delivery of genes and 

BENSpm drug, which may further boost the therapeutic effect of the cargo genes. 

Design of the dual delivery systems will be further discussed in the following chapters. 
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CHAPTER 3  

SYNTHESIS OF BISETHYLNORSPERMINE LIPID PRODRUG AS GENE DELIVERY 

VECTOR TARGETING POLYAMINE METABOLISM IN BREAST CANCER 

 

Please note that the content of this chapter was published in Molecular 

Pharmaceutics [265]. As the second author of the study, I performed particle size and 

zeta potential measurements, cytotoxicity assays in MDA-MB-231 cells (cytotoxicity in 

MCF-7 cells were measured by Dr. C. Wu, the fifth author), luciferase transfection in 

MDA-MB-231 cells (transfection in B16F10 cells and MCF-7 cells were performed by 

Dr. Q. Zhou, the fourth author), SSAT assay and analysis of the combination treatment. 

The first author Dr. Y. Dong performed the synthesis and chemical characterization of 

the lipids. Dr. J. Li, the third author, performed agarose gel retardation assay and 

ethidium bromide exclusion assay. All the authors agreed with including their work in 

this dissertation. 

 

3.1 Introduction  

Successful implementation of novel gene therapy protocols requires the 

development of strategies to effectively deliver nucleic acids to disease targets. Cationic 

lipids and polymers continue to gain strength as viable alternatives to viral delivery 

vectors. However, progress in the development of these vectors continues to be 

hampered by their low transfection activity and toxicity of the cationic molecules. The 

classical biomaterial design paradigm: “preparing vectors that are biodegradable into 



www.manaraa.com

59 

 

 

nontoxic low-molecular weight byproducts” yielded many cationic lipids and polymers 

with acceptable toxicity. Although the toxicity can be decreased to some extent by using 

biodegradable molecules, amplifying transfection activity is the more difficult problem to 

solve because it involves complex delivery across multiple barriers. One way to 

overcome the low transfection is to combine a therapeutic gene with traditional small-

molecule drugs that enhance the gene’s therapeutic activity [266, 267]. Such drug/gene 

combination therapies can be accomplished by a simple combination of gene therapy 

protocols with existing drugs. Alternatively, synthetic gene delivery vectors can be 

designed that not only deliver a gene but also augment the activity of the gene by 

exerting their own pharmacologic effect. 

There are a growing number of successful examples of drug and gene delivery 

vectors that combine the delivery function with a pharmacologic activity. For example, 

Prof. Huang’s group developed a novel cationic lipid capable of delivering siRNA while 

simultaneously enhancing siRNA antitumor effect by down-regulating pERK [71]. 

Pluronic copolymers have been shown to chemosensitize multidrug resistant cancers by 

inhibiting P-glycoprotein and decreasing cellular ATP pools [88]. Peptides with intrinsic 

proteasome inhibitory function have been shown to deliver and enhance transfection 

activity of plasmid DNA [90]. Cyclodextrins, widely used as excipients and as parts of 

drug delivery vectors, have been shown to have activity in the treatment of a lysosomal 

storage disorder [268]. 

Natural polyamines SPD, SPM, and their diamine precursor PUT are essential 

factors for growth of eukaryotic cells. We have recently proposed dually functioning 

cationic gene delivery vectors based on polyamine analogues [269]. These agents 



www.manaraa.com

60 

 

 

exploit the self-regulatory nature of the metabolism of cellular polyamines and have 

multiple targets in the polyamine pathway. Polyamine metabolism is frequently 

dysregulated in cancer and other hyper-proliferative diseases [101]. The polyamine 

pathway is a distal downstream target for a number of oncogenes, and inhibition of 

polyamine synthesis disrupts the action of those genes [101, 270, 271]. All these factors 

make polyamine analogues attractive building blocks in the design of delivery vectors 

that can not only deliver a therapeutic gene but also augment the activity of the gene by 

exerting their own pharmacologic effect. The goal of this study was to develop 

biodegradable lipid prodrug based on the polyamine analogue BENSpm that can 

function dually as gene delivery vector and, after intracellular degradation, as active 

pharmacologic agent that synergistically augments the activity of a therapeutic gene in 

cancer. We have also tested the hypothesis that the synthesized lipid BENSpm prodrug 

will enhance activity of TRAIL in breast cancer. 

 

3.2 Materials and Methods 

3.2.1. Materials 

Dioctadecylamine, 4-mercaptobenzoic acid, lithium aluminium hydride, HOBt (1-

hydroxybenzotriazole), 1-(3-N,N-dimethylaminopropyl)-3-ethylcarbodiimide 

hydrochloride (EDCI), 3,3’-dithiodipropionic acid, zinc powder, carbomethoxysulfenyl 

chloride, p-nitrophenyl chloroformate, trifluoroacetic acid (TFA), dithiothreitol (DTT), 

hydroxylamine monochloride, spermidine, and ethidium bromide (EtBr) were purchased 

from Sigma-Aldrich (St. Louis, MO). [14C]-Acetyl-CoA was purchased from PerkinElmer 

(Waltham, MA). Biodegradable scintillation cocktails (Bio-Safe NA™ for non-aqueous 
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samples, Bio-Safe II™ for aqueous samples) were purchased from RPI Corp. (Mount 

Prospect, IL). Trypsin-like enzyme (TrypLE Express) was purchased from Invitrogen-

Gibco (Carlsbad, CA). RPMI 1640 Medium, Dulbecco’s Modified Eagle’s Medium 

(DMEM), fetal bovine serum (FBS), and Dulbecco’s phosphate buffered saline (PBS) 

were purchased from Thermo Scientific-Hyclone (Logan, UT). Plasmid DNA, gWizTM 

high-expression luciferase, containing luciferase reporter gene was from Aldevron 

(Fargo, ND). Luciferase assay system with reporter lysis buffer was purchased from 

Promega (Madision, WI). Recombinant human TRAIL/Apo2L protein was purchased 

from PeproTech (Rocky Hill, NJ).  LipoBEN was synthesized as described in our 

previous publication [269]. All other reagents and solvents were purchased from 

commercial suppliers and were used without further purification unless otherwise stated.  

 

3.2.2. Synthesis 

NMR spectra were recorded on a Varian FT-NMR Unity-300, Mercury-400 or 

Mercury-500 MHz spectrometer. Chemical shifts (δ) are expressed in ppm and are 

internally referenced (0.00 ppm for TMS for 1H NMR and 77.0 ppm for CDCl3 for 13C 

NMR). Mass spectra were recorded on a Waters ZQ2000 single quadrupole mass 

spectrometer using an electrospray ionization source. 

Synthesis of 3.  A suspension of 3,3′-dithiodipropionic acid 2 (105 mg, 0.5 mmol) 

and HOBt (203 mg, 1.5 mmol) in anhydrous CHCl3 (30 mL) was added to the solution of 

EDCI (233 mg, 1.5 mmol) in anhydrous CHCl3 (10 mL) at 0 °C, followed by addition of 

the mixture of TEA (152 g, 0.21 mL, 1.5 mmol) and dioctadecylamine 1 (522 mg, 1 

mmol) in CHCl3 (10 mL). The resulting mixture was stirred at room temperature for 12 h, 
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when it turned to a clear solution. The reaction mixture was then partitioned with water 

(15 mL) at 0 °C. The organic layer was separated, and the water layer was extracted 

with CHCl3  (3 × 10 mL). Combined organic layers were washed with brine, dried over 

anhydrous Na2SO4, and evaporated under vacuum to give the crude product. The 

residue was dry-loaded to a silica gel column, and separation (eluent: CHCl3/ethyl 

acetate 4:1) gave the product 3  (0.58 g, 95%) as a white solid. Rf 0.85 (CHCl3). Mp 38-

39 °C. 1H NMR (400 MHz, CDCl3): δ  3.29 (bt, J = 7.8 Hz, 4H), 3.22 (bt, J = 7.6 Hz, 4H), 

2.96 (t, J = 7.0 Hz, 4H), 2.73 (t, J = 7.4 Hz, 4H), 1.55-1.50 (m, 8H), 1.26 (bs, 112H), 

0.88 (t, J = 6.6 Hz, 12H). 13C NMR (100 MHz, CDCl3): 170.2, 47.9, 46.0, 33.5, 32.7, 

31.9, 29.65, 29.60 (m), 29.55, 29.51, 29.4, 29.3, 29.1, 27.7, 27.0, 26.9, 22.6, 14.0. ESI 

MS (m/z): calcd for C78H156N2O2S2 [M + H]+ 1218.16, found 1217.99; [M + Li]+ 1224.17, 

found 1224.00; [M + K]+ 1256.12, found 1255.96. 

Synthesis of 4. The synthesis of 4 followed previous publication [272]. To a 

solution of 3 (0.55 g, 0.79 mmol) in acetic acid (10 mL) was added zinc powder (0.51 g, 

7.9 mmol) at 0 °C. The mixture was refluxed for 40 min and monitored by TLC (viewed 

by UV and stained by DTNB). The mixture was filtered over Celite and washed with 

CHCl3. The obtained organic solution was evaporated under vacuum. The residue was 

flushed with nitrogen to remove excess acetic acid. The white solid was dissolved in 

CHCl3 (10 mL) and washed with water to neutrality. The combined organic layers were 

then washed with brine, dried over anhydrous Na2SO4, and concentrated under 

vacuum. The residue was purified by silica gel column (eluent: CHCl3/ethyl acetate 4:1) 

to give the product 4  (0.55 g, 100%) as a white solid. Rf 0.52 (CHCl3). Mp 44-45 °C. 1H 

NMR (400 MHz, CDCl3): δ 3.30 (bt, J = 7.8Hz, 2H), 3.20 (bt, J = 7.8 Hz, 2H), 2.80 (bq, 
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J1 = 7.6 Hz, 2H), 2.63 (t, J = 6.6 Hz, 4H), 1.72 (t, J = 8.4 Hz), 1.53 (m, 4H), 1.26 (bs, 

56H), 0.88 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3): 169.9, 47.7, 45.9, 37.0, 31.8, 

29.60, 29.56 (m), 29.5, 29.4, 29.3, 29.2, 28.9, 27.7, 26.9, 26.8, 22.6, 20.2, 13.9. ESI MS 

(m/z): calcd for C39H79NOS [M + H]+ 610.59, found 610.51; [M + Li]+ 616.60, found 

616.52; [M + K]+ 648.55, found 648.47. 

Synthesis of 5. The solution of 4 (0.53 g, 0.87 mmol) in methanol (5 mL) was 

added dropwise to a solution of carbomethoxysulfenyl chloride (0.11 g, 0.87 mmol) in 

methanol (10 mL) and CHCl3  (20 mL) at 0 °C. The mixture was stirred for 30 min at 0 

°C, then allowed to reach room temperature, and after 4 h evaporated under vacuum. 

The obtained residue was dissolved in CHCl3 (10 mL) and purified on silica (CHCl3/ethyl 

acetate 4:1). Pure product 5 was obtained as colorless oil, which turned to a white solid 

when kept in a freezer (0.55 g, 90%). Rf 0.39 (CHCl3). Mp 36-37 °C. 1H NMR (400 MHz, 

CDCl3): δ 3.88 (s, 3H), 3.29 (bt, J = 7.8 Hz, 2H), 3.20 (bt, J = 7.8 Hz, 2H), 3.01 (t, J = 

7.2 Hz, 2H), 2.72 (t, J = 7.0 Hz, 4H), 1.52 (m, 4H), 1.26 (bs, 56H), 0.88 (t, J = 7.0 Hz, 

6H). 13C NMR (100 MHz, CDCl3): 170.1, 169.7, 55.2, 47.8, 46.0, 35.1, 32.7, 31.9, 29.63, 

29.59, 29.52 (m), 29.5, 29.3, 29.2, 29.0, 27.7, 26.9, 26.8, 22.6, 20.2, 14.0. ESI MS 

(m/z): calcd for C41H81NO3S2 [M + H]+ 700.57, found 700.57; [M + Na]+ 722.55, found 

722.54; [M + Li]+ 706.58, found 706.58; [M + K]+ 738.52, found 738.51. 

Synthesis of 6.  A solution of 4-mercaptobenzoic acid (0.77 g, 5 mmol) in dry 

THF (10 mL) was added dropwise to a suspension of lithium aluminum hydride (0.57 g, 

15 mmol) in dry THF (10 mL) under nitrogen at 0 °C [273]. The mixture was stirred 

overnight at room temperature. Water (5 mL) was added, followed by aqueous HCl (1 

N, 5 mL) at 0 °C, and the mixture was stirred for 5 min. The solution was extracted with 
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diethyl ether (3 × 10 mL). The organic layer was washed with H2O (20 mL) and brine (10 

mL), dried over anhydrous Na2SO4, and then concentrated under vacuum at room 

temperature. The residue was purified by a short silica gel column to give the product as 

a white solid (0.56 g, 80%). Rf 0.28 (hexane: EA 2: 1) Mp 49-51 °C. 1H NMR (400 MHz, 

CDCl3): δ 7.26-7.20 (m, 4H), 4.60 (s, 2H), 3.45 (s, 1H), 2.00 (bs, 1H). 13C NMR (100 

MHz, CDCl3): 138.3, 129.9, 129.5, 127.8, 64.7. 

Synthesis of 7.  A solution of 6 (0.32 g, 2.28 mmol) in CH3OH/CHCl3  (5 mL/10 

mL) was added to a solution of 5 (0.53 g, 0.76 mmol) in CH3OH (5 mL) at 0 °C under 

nitrogen. The mixture was stirred for 1 h at 0 °C and then warmed to room temperature. 

After 3 days, the mixture was evaporated and the obtained residue was dissolved by 

CHCl3 and purified by a short silica gel column (hexane/ethyl acetate 3:1). Compound 7 

was obtained as colorless oil, which turned to a white solid in the freezer (0.42 g, 75%). 

Rf 0.38 (hexane/ethyl acetate 3: 1). Mp 40-41 °C. 1H NMR (400 MHz, CDCl3): δ 7.47 (d, 

J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 4.61 (s, 2H), 3.35 (bs, 1H), 3.24 (bt, J = 7.6 

Hz, 2H), 3.10 (bt, J = 7.8 Hz, 2H), 2.96 (t, J = 7.0 Hz, 2H), 2.66 (t, J = 7.2 Hz, 2H), 1.47 

(m, 4H), 1.26 (bs, 56H), 0.88 (t, J = 7.0 Hz, 6H). 13C NMR (100 MHz, CDCl3): 170.1, 

140.2, 135.9, 127.6, 127.4, 64.1, 47.8, 46.0, 34.0, 32.4, 31.8, 29.58, 29.54, 29.47 (m), 

29.4, 29.3, 29.2 (m), 28.9, 27.6, 26.9, 26.7, 22.6, 14.0. ESI MS (m/z): calcd for 

C46H85NO2S2 [M + H]+ 748.60, found 748.61; [M + Na]+ 770.59, found 770.60; [M + Li]+ 

754.62, found 754.63; [M + K]+ 786.57, found 786.59.  

Synthesis of 8. p-Nitrophenyl chloroformate (0.23 g, 1.12 mmol) was added to a 

solution of 7 (0.42 g, 0.56 mmol) in anhydrous CHCl3 at 0 °C under nitrogen, followed 

by TEA (0.234 mL, 1.68 mmol). The mixture was stirred for 30 min and then warmed to 
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room temperature. After stirring for 24 h, the mixture was evaporated and the obtained 

residue was dissolved in CHCl3 and purified by a short silica gel column (hexane/ethyl 

acetate 5:1). Recrystallization from ethyl acetate gave the pure product 8 as a white 

solid (0.36 g, 70%). Rf 0.37 (hexane/ethyl acetate 5:1). Mp 52-53 °C. 1H NMR (400 

MHz, CDCl3): δ 8.27 (d, J = 8.8 Hz, 2H), 7.58 (d, J = 8.8 Hz, 2H), 7.41− 7.37 (m, 4H), 

5.27 (s, 2H), 3.28 (bt, J = 7.8 Hz, 2H), 3.14 (bt, J = 7.8 Hz, 2H), 3.04 (t, J = 7.0 Hz, 2H), 

2.71 (t, J = 6.8 Hz, 2H), 1.48 (m, 4H), 1.26 (bs, 56H), 0.88 (t, J = 6.6 Hz, 6H). 13C NMR 

(100 MHz, CDCl3): 169.9, 155.4, 152.4, 145.4, 138.7, 132.6, 129.4, 127.2, 125.2, 121.7, 

70.3, 47.8, 46.1, 34.2, 32.5, 31.9, 29.66, 29.62, 29.6 (m), 29.4, 29.3, 29.0, 27.7, 27.0, 

26.8, 22.6, 14.1. ESI MS (m/z): calcd for C53H88N2O6S2 [M + H]+ 913.62, found 913.72; 

[M + Na]+ 935.60, found 935.69; [M + Li]+ 919.62, found 919.74. 

Synthesis of Lipo-SS-BEN. BENSpm·4HBr (0.705 g, 1.25 mmol) was stirred with 

solid sodium hydroxide (1.0 g, 25 mmol) in anhydrous CHCl3 (20 mL) for 3 h at room 

temperature. Anhydrous Na2SO4 (1.0 g) was added, and the mixture was stirred for 

another 30 min. Filtration and washing with CHCl3 (10 mL) gave a solution that 

contained free base BENSpm (1.25 mmol). The obtained BENSpm solution in CHCl3 

was cooled downed to 0 °C, and a solution of 8 (0.23 g, 0.25 mmol) in anhydrous CHCl3 

(15 mL) was added dropwise under nitrogen. After addition, the reaction mixture was 

stirred at 0 °C for 2 h to reach completion based on TLC. The reaction mixture was 

purified by a short silica gel column (methanol/ethyl acetate 1: 1) to remove p-

nitrophenol, followed by elution with CH2Cl2/CH3OH/sat. NH3 (25: 10: 0.5). The collected 

eluent containing product was neutralized with 5 M acetic acid to pH 7.4. Evaporation 

under reduced pressure at 25 °C gave a solid residue. Residual ammonium acetate was 
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removed under vacuum at room temperature to give the product as acetate salt (0.36 g, 

70%, kept at -40 °C).  Rf 0.46 (CH2Cl2/CH3OH/sat. NH3 25:10:1). Mp 36-40 °C. 1H NMR 

(400 MHz, CDCl3/CD3OD 10:1): δ 7.54 (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 5.09 

(s, 2H), 3.36 (m, 6H), 3.22 (bt, 2H), 2.99 (t, J = 6.4 Hz, 2H), 2.85 (m, 4H), 2.76 (m, 6H), 

1.95 (s, 3H), 1.79 (bm, 4H), 1.51 (bm, 4H), 1.26 (bs, 59H), 1.14 (t, J = 6.8 Hz, 3H), 0.88 

(t, J = 6.6 Hz, 6H). 13C NMR (100 MHz, CDCl3): 177.3, 170.0, 137.2, 135.2, 128.8, 

127.4, 66.0, 47.9, 46.1, 34.1, 32.6, 31.9, 29.7, 29.6 (m), 29.4, 29.3, 29.0, 27.7, 27.0, 

26.9, 25.2, 24.1, 23.2, 22.6, 14.1. ESI MS (m/z): calcd for C60H115N5O3S2 [M + H]+ 

1018.85, found 1018.89; [M + 2H]2+ 509.93, found 510.23; [M+Li]+ 1024.86, found 

1024.94. 

Synthesis of 9. Boc2O (0.2 g, 0.92 mmol) was added to a solution of Lipo-SS-

BEN (0.11 g, 0.11 mmol) in anhydrous CHCl3 (5 mL) at 0 °C under nitrogen. The 

mixture was stirred for 1 h at 0 °C and then warmed to room temperature. After stirring 

for 12 h, the mixture was purified by a short silica gel column to give pure product 9 as 

colorless oil (0.11 g, 75%).  Rf 0.30 (hexane/ethyl acetate 5: 1). 1H NMR (400 MHz, 

CDCl3): δ 7.52 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 5.09 (s, 2H), 3.30-3.10 (m, 

22H), 3.02 (t, J = 6.8 Hz, 2H), 2.72 (t, J = 6.8 Hz, 2H), 1.74 (m, 6H), 1.49-1.45 (muls, 

31H), 1.26 (bs, 56H), 1.09 (t, J = 6.8 Hz, 2H), 0.88 (t, J = 7.0 Hz, 6H). 13C NMR (100 

MHz, CDCl3): 170.1, 155.8, 155.4, 152.4, 145.3, 138.6, 132.6, 129.4, 127.2, 125.2, 

121.7, 70.3, 47.8, 46.1, 34.2, 32.5, 31.9, 29.66, 29.62, 29.6 (m), 29.4, 29.3, 29.0, 27.7, 

27.0, 26.8, 22.6, 14.1. ESI MS (m/z): calcd for C75H139N5O9S2 [M + Na]+ 1340.99, found 

1341.42; [M + 2Na]2+ 681.99, found 682.54; [M + K]+ 1356.96, found 1357.39. 
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3.2.3. EtBr exclusion assay 

The ability of the cationic lipids to condense DNA was determined by measuring 

changes in EtBr/DNA fluorescence. DNA solution at a concentration of 20 µg/mL was 

mixed with EtBr (1 µg/mL), and fluorescence was measured and set to 100% using 

λexc/λem 540/590 nm. Fluorescence readings were taken following a stepwise addition of 

the lipid solution prepared in 10 mM HEPES pH 7.4, and the condensation curve for 

each lipid was constructed. 

 

3.2.4. Agarose gel retardation assay 

The condensation ability of the lipids and the redox stability of the lipoplexes 

were examined by agarose gel electrophoresis. Lipid/DNA complexes were formed at 

specified N/P ratios and incubated with or without 20 mM GSH and with or without 

increasing concentration of heparin for 30 min. Samples were loaded onto a 0.8% 

agarose gel containing 0.5 µg/mL EtBr and run for 60 min at 120 V in 0.5× TBE running 

buffer. The gel was visualized under UV illumination on a Gel Logic 100 imaging 

system. 

 

3.2.5. Particle size and zeta potential measurement 

The hydrodynamic diameters and zeta potentials of lipid/DNA complexes 

prepared in 10 mM HEPES (pH 7.4) were determined using ZetaPlus Particle Size and 

Zeta Potential analyzer (Brookhaven Instruments) (Table 4). Lipid/DNA complexes were 

formed at specified N/P ratios and incubated for 30 min. Scattered light was detected at 

90° angle and 25 °C. 
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3.2.6. Cell lines 

B16F10 mouse melanoma cells were cultured in DMEM supplemented with 10% 

FBS. MCF-7 human breast adenocarcinoma cells were cultured in RPMI medium with 

10% FBS. MDA-MB-231 breast cancer cells were cultured in RPMI with 10% FBS and 

1% penicillin/streptomycin. All cells were cultured at 37 °C in incubator with 5% CO2. 

 

3.2.7. Cell viability assay 

Cytotoxicity of the cationic lipids in human breast cancer cell lines MCF-7 and 

MDA-MB-231 was determined by MTS assay using CellTiter 96® Aqueous Cell 

Proliferation Assay Kit (Promega). 4,000 cells were seeded in a 96-well plate and 

allowed to attach overnight, culturing medium was then removed and replaced with 200 

µL of medium with increasing concentration of the relative drug. Medium was replaced 

every 48 h with fresh medium containing the same concentration of the respective drug. 

After 120 h treatment, cell viability was determined by MTS assay according to 

manufacturer’s protocol. The results are expressed as mean percentage cell viability 

relative to untreated cells ± SEM (n = 4-8). IC50 values were calculated using Prism 5 

(Graphpad Software, Inc.) using sigmoidal nonlinear regression. 

 

3.2.8. Luciferase transfection 

Complexes were prepared by adding a predetermined amount of cationic lipids to 

the solution of plasmid DNA in 10 mM HEPES pH 7.4 to achieve a final DNA 

concentration of 32 µg/mL and N: P ratios of 2, 4, 8, 16, 32. Mass of 325 per one 
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phosphate group of DNA was assumed in the calculations. All transfection studies were 

performed in 96-well plates or 48-well plates with cells plated 24 h before transfection at 

the seeding density of 12,000 cells/well (for 96-well plate) and 50,000 cells/well (for 48-

well plate). The cells were incubated with DNA complexes for 3 h in 150 µL of medium 

without FBS at 2 µg DNA/mL. Luciferase expression was measured after 24 h and 

expressed as mean relative light units (RLU) per mg of cellular protein measured by the 

bicinchoninic acid (BCA) assay ± SD of quadruplicate samples. 

 

3.2.9. SSAT assay 

Enzymatic activity of SSAT in MDA-MB-231 cells was determined using [14C]-

Acetyl-CoA substrate as previously described [274, 275]. In brief, cells were harvested 

after the treatment with BENSpm, LipoBEN and Lipo-SS-BEN at the doses of the 

relative IC50 values, and resuspended in SSAT breaking buffer (5 M HEPES, 1 M DTT, 

PH 7.2) at 2×107 cells/mL and centrifuged at 14,000 rpm for 15 min at 4 °C. 25 µL of the 

supernatant was used to obtain total cellular protein concentration using BCA protein 

assay reagent (Pierce, Thermo Scientific). Another 20 µL of each sample was mixed 

with reaction mixture (10 µL 0.5 M HEPES, pH 7.8, 5 µL 30 mM spermidine, 0.5 µL  

[14C]-Acetyl-CoA, 14.5 µL ddH2O) and incubated in 37 °C water bath for 5 min. 20 µL 

0.5 M hydroxylamine was then added to each sample. Reaction was stopped by boiling 

the samples for 3 min. 50 µL of each sample was then pipetted to p81 Whatman filter, 

and put into wash system with continuous water flow for 30 min and suspended in 

Biosafe counting fluid.  Each sample was counted for 1 min using 1209 Rackbeta liquid 

scintillation counter (PerkinElmer). 
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3.2.10. Analysis of the combination treatment with TRAIL 

The median effect/combination index model was used to determine synergy of 

the combination treatments of the cationic lipids with TRAIL. Cells were treated for 120 

h with increasing concentration of TRAIL, LipoBEN, Lipo-SS-BEN, or their combinations 

at a constant molar ratio equal to the ratio of their IC50. The following molar ratios were 

used: Lipo-SS-BEN: TRAIL 1,372: 1; and Lipo-SS-BEN: TRAIL 19,600: 1. Cell viability 

was measured by MTS assay as described above. Results were analyzed by 

CompuSyn software (ComboSyn, Inc. Paramus, NJ) to quantitatively determine whether 

the combination treatment was synergistic [261].  

 

3.3 Results and Discussion 

We have previously proposed that BENSpm can serve as a suitable building 

block of cationic lipids and polymers that can function dually as gene delivery vectors 

and active pharmacologic agents targeting dysregulated polyamine metabolism in 

cancer. To that end, we reported synthesis of a lipid derivative of BENSpm (LipoBEN, 

 

Figure 11. Structure of BENSpm and its lipid derivatives. 
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Figure 11) and demonstrated its ability to deliver genes in vitro [269]. The cytotoxic 

effects of BENSpm result, in part, from inducing polyamine catabolic enzymes such as 

SSAT. Here we measured whether the SSAT inducing capability is preserved in 

LipoBEN by measuring SSAT activity in human breast cancer cells MDA-MB-231 

(Figure 12). The results show that modification of BENSpm with the lipid moiety results 

in the loss of its SSAT-inducing activity. This result motivated the present study and 

provided a strong rationale for adopting a prodrug approach to the synthesis of 

BENSpm-based gene delivery vectors.  

 

3.3.1. Synthesis of Lipo-SS-BEN prodrug 

We have considered multiple prodrug strategies in our approach. Ester prodrugs 

are widely used in drug design because of easy degradation by ubiquitous plasma 

 

Figure 12. SSAT induction by BENSpm and its lipid derivatives. MDA-MB-231 cells 
were treated with IC50 dose of indicated sample for 72 h. Results are shown as mean 
pmol of N1-acetylspermidine/mg of protein/min ± SD, n=3. One-way ANOVA with 
Tukey’s multiple comparison test (p < 0.05 untreated vs BENSpm, untreated vs Lipo-
SS-BEN, and LipoBEN vs Lipo-SS-BEN).  
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esterases or chemical hydrolysis. Prodrug strategies for amine drugs like BENSpm, 

however, are limited by the high stability of amide bonds. For dual-functioning BENSpm-

based gene delivery vectors, spatiotemporal considerations of the prodrug activation 

were crucial. Successful gene delivery requires the delivery vector to remain intact until 

the DNA is transported into the target cell. Therefore, enzymatically activated amine 

prodrug approaches, such as carbamates and N-acyloxyalkyl derivatives, in which 

activation typically occurs in the plasma, were not considered suitable. Other strategies 

that limit prodrug activation to intracellular enzymes, such as peptide spacers activated 

by lysosomal cathepsins [276], were excluded because of the unfavorable intracellular 

location of the activation (lysosomal activation and release of DNA is considered 

premature). Functional groups like β-aminoketones, N-Mannich bases, and enaminones 

offer easy nonenzymatic hydrolytic transformation of amine drugs from their prodrug 

forms [277-279]. The possible ways to control spatiotemporal localization of the 

activation in these approaches are limited. However, it is well established that disulfide 

reduction is localized predominantly to the cytoplasm and nucleus, which is highly 

beneficial for gene delivery [262, 280-284]. Based on these considerations, we selected 

reducible dithiobenzyl carbamate linker [285, 286] to synthesize Lipo-SS-BEN prodrug 

that can be activated by intracellular thiolysis of the disulfide bond (Scheme 3). 
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Scheme 3. Mechanism of thiolytic activation of Lipo-SS-BEN. 
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The target compound Lipo-SS-BEN was synthesized using a six step synthesis, 

depicted in Scheme 4. Despite the four amines in BENSpm, a single product Lipo-SS-

BEN was detected by ESI-MS and TLC. ESI-MS of the reaction mixture gave the 

expected m/z 1018.97 and 510.26 peaks, corresponding to m/z (M + H)+ and (M + 2H)2+ 

of Lipo-SS-BEN (Figure 13a). Excess BENSpm (MW 244.26) was seen at m/z (M + H)+ 

and (M + 2H)2+ 245.47 and 123.33 in Figure 13a. Purification of Lipo-SS-BEN was 

confronted with difficulties caused by easy decomposition during drying due to 

 

 

Scheme 4. Synthesis of Lipo-SS-BEN prodrug. 
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susceptibility to disulfide-disulfide exchange reactions. Purification of the reaction 

mixture by silica gel chromatography gave the expected Lipo-SS-BEN in the eluent. 

Isolated Lipo-SS-BEN was neutralized with 5 M acetic acid and the solvent was 

removed to give the desired compound as acetate salt mixed with ammonium acetate. 

The ammonium acetate could be removed slowly under reduced pressure but some 

decomposition was still observed (Figure 13b, c). 

Finally, we confirmed that, due to steric effects, it was the terminal and not the 

internal amine of BENSpm that was substituted in Lipo-SS-BEN. The purified Lipo-SS-

BEN was reacted with Boc2O to give fully Boc-protected compound 9 (Scheme 5). 

Reductive degradation of 9 with DTT gave tri-Boc-protected BENSpm 10. The 1H NMR 

and 13C NMR of compound 10 were found to agree with the known NMR spectra of 

3,7,11-tri-Boc BENSpm reported in our previous study [269]. This result confirmed that 

the location of BENSpm substitution in Lipo-SS-BEN shown in Figure 11 and Scheme 4 

is correct. We have also attempted synthesis of Lipo-SS-BEN by reaction of 8 with 10, 

but this approach failed due to decomposition of compound 9 during Boc deprotection 

with TFA. 
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Figure 13. ESI-MS and 1H NMR spectra of Lipo-SS-BEN prodrug. (a) ESI-MS of 
unpurified Lipo-SS-BEN after reaction of 8 with BENSpm. (b) ESI-MS of Lipo-SS-BEN 
after purification. (c) 1H NMR of Lipo-SS-BEN in CDCl3. 
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3.3.2. Reductive release of BENSpm from Lipo-SS-BEN and restoration of SSAT 

inducing activity 

Intracellular reduction or thiolytic breakage of the disulfide in Lipo-SS-BEN by 

GSH is expected to lead to an unstable p-mercaptobenzyl urethane intermediate, 

 

Scheme 5. Synthesis and degradation of compound 9. 

 

Figure 14. ESI-MS after reductive degradation of Lipo-SS-BEN. 
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followed by a breakdown via 1,6-elimination and decarboxylation, and ultimately result 

in the regeneration of the original BENSpm molecule and a GSH-conjugated lipid [287, 

288]. For success of our approach, it was necessary to verify that Lipo-SS-BEN is 

transformed to free BENSpm following cleavage of the disulfide bond. Lipo-SS-BEN 

was therefore treated with excess of a strong reducing agent (100 mM DTT) in PBS at 

37 °C, and progress of the reaction was monitored by TLC and ESI-MS for 24 h. The 

TLC showed complete disappearance of Lipo-SS-BEN after 10 min of treatment with 

DTT and appearance of a mixture of intermediates that disappeared after 4 h (not 

shown). ESI-MS analysis shown in Figure 14 confirmed the TLC results by showing 

complete decomposition of Lipo-SS-BEN and release of BENSpm as indicated by the 

disappearance of the peak at 1018 and appearance of the peak at 632.64, 

corresponding to m/z [M + Na]+ of regenerated compound 4  (MW 609.58) and the 

peaks of free BENSpm shown at m/z (M + H)+ and (M + 2H)2+ at 245.47 and 123.33. 

The activation of the Lipo-SS-BEN prodrug and release of functional BENSpm was 

subsequently confirmed in MDA-MB-231 cells by demonstrating restored SSAT-

inducing activity when compared with nondegradable LipoBEN (Figure 12). This result 

clearly suggests that the dithiobenzyl carbamate linker is cleaved in the intracellular 

environment and that BENSpm is released in its active form. 
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3.3.3. Decreased toxicity of Lipo-SS-BEN and synergistic enhancement of TRAIL 

activity 

Toxicity of cationic vectors is a major concern in their use in gene delivery. We 

expected that degradability of Lipo-SS-BEN will not only restore BENSpm activity as 

shown above but also will result in decreased toxicity of the lipid. We measured the 

toxicity using MTS assay in MDA-MB-231 cells (Table 3). The results confirmed that 

Lipo-SS-BEN is significantly less toxic than the nondegradable LipoBEN. Similar results 

were observed also in MCF-7 cells, where LipoBEN showed IC50 = 1.40 ± 0.40 µM while 

Lipo-SS-BEN showed decreased toxicity with IC50 = 17.2 ± 1.9 µM. Our results confirm 

previous studies that cationic lipids and polymers degradable by intracellular disulfide 

reduction exhibit reduced toxicity compared to nondegradable analogues [289-291]. The 

fact that Lipo-SS-BEN had lower IC50 than the parent BENSpm is a reflection of the 

general toxicity of cationic lipids and not a result of enhanced antiproliferative activity of 

Table 3. Cytotoxicity of TRAIL, BENSpm and its derivatives in MDA-MB-231. 

Sample IC50 
a µM 

BENSpm 91.4 ± 37.6 

Lipo-SS-BEN 21.4 ± 2.9 

LipoBEN 6.84 ± 0.69 

TRAIL 0.0051 ± 0.2 

aIC50 values were determined by MTS assay after 120 h treatment 
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BENSpm as suggested by similar SSAT-inducing activity of Lipo-SS-BEN and BENSpm 

(Figure 12). 

 

The main objective of this study was to design BENSpm-based lipids capable of 

functioning dually as (i) gene delivery vectors and (ii) active anticancer agents targeting 

dysregulated polyamine metabolism in cancer. As described in Chapter 2, BENSpm 

showed strong synergistic effect with TRAIL in MDA-MB-231 cells. Thus it was 

important to investigate if the Lipo-SS-BEN prodrug retained the synergism with TRAIL. 

To allow determination of synergy using the Chou-Talalay method, all TRAIL 

combination experiments were performed at constant BENSpm lipid: TRAIL ratios 

(Figure 15) determined from the ratios of the IC50 values of the individual agents. Four 

 

Figure 15. Effect of (a) Lipo-SS-BEN or (b) LipoBEN on antiproliferative activity of 
TRAIL in MDA-MB-231 cells and the calculated CI value for combination of TRAIL 
with (c) Lipo-SS-BEN or (d) LipoBEN.  
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doses were used in serial dilutions covering the activity range of LipoBEN, Lipo-SS-

BEN, and TRAIL, and the fraction of killed cells (fa) was determined by MTS assay. CI 

value was calculated by the Chou-Talalay method using CompuSyn software [264]. As 

described in Chapter 2, the parent BENSpm enhances activity of the TRAIL protein in 

triple-negative breast cancer cells MDA-MB-231, with CI values less than 0.04 across 

the entire studied fa range. We then evaluated whether the enhancing effect of BENSpm 

on TRAIL activity is preserved in Lipo-SS-BEN (Figure 15a and c). Combination 

treatment with Lipo-SS-BEN and TRAIL was indeed more effective than either of the 

agents alone, but the calculated CI values were higher than in the case of 

BENSpm/TRAIL combination, indicating a weaker synergism and a simple additive 

effect at lower fa range. A similar outcome was obtained when the cells were treated 

with LipoBEN/TRAIL combination (Figure 15b and d). We hypothesize that the transition 

from a strong synergism in BENSpm/TRAIL treatment to a weaker synergism and even 

more additive effect of the BENSpm lipids is the result of nonspecific toxicity associated 

with the cationic lipids and not a specific effect of BENSpm on polyamine metabolism. 

The effect of the nonspecific lipid toxicity is prominent even in Lipo-SS-BEN despite its 

degradability. We propose that, in order to take full advantage of the BENSpm/TRAIL 

synergism that is based on a specific mechanism of action of BENSpm on the 

polyamine metabolism, toxicity of the BENSpm-based delivery vectors will have to be 

decreased even beyond the decrease achieved with Lipo-SS-BEN. 
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3.3.4. Evaluation of DNA complexes of Lipo-SS-BEN.  

The ability to efficiently deliver genes is an important requirement for the dually 

functioning BENSpm-based delivery vectors. We have therefore conducted preliminary 

studies to determine their ability to deliver reporter gene in vitro. We first confirmed the 

ability of LipoBEN and Lipo-SS-BEN to condense DNA using EtBr exclusion assay 

(Figure 16a). Both Lipo-SS-BEN and LipoBEN efficiently condensed DNA, while the 

parent BENSpm showed poor condensation ability with only 20% decrease in 

fluorescence intensity at N/P 8. LipoBEN showed a more efficient DNA condensing 

ability as indicated by the fact that full DNA condensation was achieved at N/P < 2, 

while N/P 5 was required in the case of Lipo-SS-BEN. 

Table 4. Hydrodynamic diameter and zeta potential of Lipo-SS-BEN/DNA (N/P 20) 
and LipoBEN/DNA (N/P 8) complexes. 
 

Sample Size (nm) Zeta (mV) 

Lipo-SS-BEN 98.6 ± 0.9 30.9 ± 3.1 

LipoBEN 86.2 ± 0.8 41.0 ± 1.1 
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We expect that the intracellular cleavage of the disulfide bond in Lipo-SS-BEN 

should be mediated by thiol/disulfide exchange reactions with small redox molecules 

like GSH. The reduction is expected not only to release the active form of BENSpm but 

also to facilitate release of the DNA from Lipo-SS-BEN/DNA complexes. Cellular GSH is 

predominantly present in the cytoplasm (1-11 mM), which is also the principal site of 

 

Figure 16. DNA condensation and reduction-triggered DNA release from Lipo-SS-
BEN complexes. (a) DNA condensation by BENSpm, LipoBEN and Lipo-SS-BEN 
assessed by EtBr exclusion assay. (b) Effect of disulfide reduction on susceptibility of 
Lipo-SS-BEN/DNA complexes to polyelectrolyte exchange reactions with heparin. 
LipoBEN/DNA (N/P 8) and Lipo-SS-BEN (N/P 20) were treated with increasing 
concentration of heparin either alone or in combination with 20 mM GSH. 
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GSH biosynthesis [292-294]. However, nuclear GSH concentrations are typically even 

higher and can reach up to 20 mM [295-297]. As shown above, the reduction of the 

disulfide bond in Lipo-SS-BEN resulted in the release of BENSpm. The effect of 

disulfide reduction on the DNA release was investigated by incubating Lipo-SS-

BEN/DNA and control LipoBEN/DNA complexes with 20 mM GSH and by analyzing the 

concentration of heparin required to destabilize the complexes and release free DNA 

(Figure 16b). The control nonreducible LipoBEN/DNA complexes were stable in the 

absence of GSH up to 100 µg/mL heparin. At heparin concentrations 100 µg/mL and 

above, signs of free DNA were observed but most of the DNA was confined to the start 

of the gel. In the reducing environment of 20 mM GSH, first signs of DNA release from 

the LipoBEN/DNA complexes were observed at 80 µg/mL heparin. Strong 

responsiveness to reducing conditions was observed for Lipo-SS-BEN/DNA complexes, 

suggesting that the employed prodrug strategy not only results in the release of an 

active form of BENSpm but also facilitates DNA release from the complexes. We predict 

that the fact that cancer cells often exhibit elevated levels of GSH will further increase 

the effectiveness of the thiolytically activated gene delivery vector [282]. No DNA 

release was observed in oxidizing conditions up to 120 µg/mL heparin, while only 40 

µg/mL heparin was required to cause DNA release in the reducing conditions of 20 mM 

GSH. 

Initial transfection activity of the BENSpm-based DNA complexes was 

determined in a panel of three cell lines using luciferase reporter plasmid (Figure 17). 

DOTAP/DNA complexes were used as controls. DNA complexes of the nondegradable 

LipoBEN showed consistently higher transfection activity than bioreducible Lipo-SS-
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BEN/DNA complexes in all three cell lines. As expected, transfection of BENSpm/DNA 

complexes was several orders magnitude lower than transfection of any of the BENSpm 

lipid complexes across all tested N/P ratios. Overall, transfection of the Lipo-SS-BEN 

complexes showed a stronger dependence on the N/P ratio, in particular in the B16F10 

and MDA-MB-231 cells. Between the lowest and highest tested N/P ratio, the 

transfection of Lipo-SS-BEN complexes increased 192-, 15-, and 6,760-fold in the 

B16F10, MCF-7, and MDA-MB-231 cells, respectively. For comparison, the 

corresponding increases for LipoBEN complexes were 4-, 6-, and 270-fold. The strong 

N/P dependence is likely the result of premature disulfide breakage in Lipo-SS-BEN. It 

suggests that Lipo-SS-BEN may be partly degraded already before cell uptake by 

extracellular thiols, thus requiring larger lipid excess to achieve comparable transfection 

as LipoBEN complexes. Differences among the three cell lines are likely the result of 

different amounts of secreted thiols from different cells as suggested previously [298]. 
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Figure 17. Transfection activity of BENSpm and its lipid derivatives in (a) B16F10 
cells, (b) MCF-7 cells, and (c) MDA-MB-231 cells. Results are expressed as 
luciferase expression in RLU/mg of protein (mean ± SD, n=4).  
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3.4 Conclusions 

We described synthesis of degradable BENSpm prodrug capable of functioning 

dually as a gene delivery vector and an active anticancer agent targeting dysregulated 

polyamine metabolism in cancer. The used dithiobenzyl carbamate linker in the Lipo-

SS-BEN prodrug is cleavable by thiolysis, which leads to the release of free BENSpm 

and restoration of SSAT-inducing activity of BENSpm. BENSpm demonstrated a strong 

synergy with TRAIL in triple negative breast cancer cells MDA-MB-231. Although Lipo-

SS-BEN also enhanced TRAIL activity, the results were confounded by nonspecific 

lipid-related toxicity that diminished the synergistic enhancement that originated in the 

specific mechanism of action of BENSpm on the polyamine pathway.  

In conclusion, we demonstrated that BENSpm could serve as a suitable building 

block for the design of gene delivery vectors with dual functionality. However, in order to 

take full advantage of the synergism based on BENSpm, general toxicity associated 

with the lipid delivery vector will have to be further decreased, even beyond the 

reduction achieved with Lipo-SS-BEN. Another drawback of the Lipo-SS-BEN is the 

instability of the lipid vector in extracellular environment, as demonstrated by decreased 

transfection efficiency compared with LipoBEN. In all, this approach shines light on our 

future endeavor towards reduced vector toxicity and more stable linker system of the 

prodrug design. 
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CHAPTER 4 

DENDRITIC POLYGLYCEROL WITH POLYAMINE SHELL AS A POTENTIAL 

MACROMOLECULAR PRODRUG AND GENE DELIVERY VECTOR 

 

4.1 Introduction 

In Chapter 3, we have synthesized biodegradable lipid prodrug (Lipo-SS-BEN) 

based on BENSpm using thiolytically sensitive dithiobenzyl carbamate linker [265, 269]. 

We have demonstrated that Lipo-SS-BEN can fulfill its function as a gene delivery 

vector while at the same time exhibit anticancer effect after intracellular cleavage of the 

dithiobenzyl carbamate linker and release of BENSpm. However, toxicity caused by the 

cationic lipid combined with extracellular instability of the linker hindered further 

development of the system.  

In order to address the problems with toxicity and linker stability, we have chosen 

dendritic polyglycerol (PG) as a safe component onto which to conjugate BENSpm. PG 

is a dendritic polyol that exhibits thermal and oxidative stability, high water solubility and 

negligible toxicity at cellular level [299, 300]. It can be synthesized by a simple one-step 

ring-opening polymerization, which allows for large-scale production. The presence of a 

large number of surface functional groups (64 surface hydroxyls for PG with molecular 

weight 5 kDa) renders PG ideal for surface functionalization [301, 302]. Our previous 

studies with BENSpm-based gene delivery vectors suggested that BENSpm has to be 

released from the vector in order to exert its full therapeutic effect via modulation of the 

polyamine pathway in cancer cells [265]. Selection of a biodegradable linker therefore 
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became critical for the success of BENSpm-based gene delivery vectors with dual 

functionality.  Instead of the dithiobenzyl carbamate linker cleavable by disulfide 

reduction with glutathione described in Chapter 3, we have chosen a carbamate linker 

cleavable by hydrolysis to conjugate BENSpm to PG. Carbamates are widely used in 

the design of amine-containing prodrugs because of an easy enzymatic cleavage or 

hydrolysis of the bond [210, 302-304]. Moreover, a recent report suggested that 

conjugates of PG with oligoamines similar to BENSpm could be enzymatically cleaved 

by the action of lipases [302]. Thus, we proposed to design BENSpm-conjugated PG 

prodrug via carbamate linkage (PG-BEN), which we expected to be beneficial for both 

BENSpm release and gene delivery functions. 

 

4.2 Materials and Methods 

4.2.1. Materials 

Plasmid DNA containing luciferase reporter gene (gWiz-Luc) was from Aldevron 

(Fargo, ND). Dulbecco’s Modified Eagle Medium (DMEM), Dulbecco’s Phosphate 

Buffered Saline (PBS), RPMI 1640 Medium, Fetal Bovine Serum (FBS) and RNase A 

(10 mg/mL) were from Thermo Scientific (Waltham, MA). Eagle's Minimum Essential 

Medium (EMEM) was from Corning (Manassas, VA). MDA-MB-231-luc2 cells and 

B16F10-luc2 cells stably transfected with firefly luciferase gene (luc2) were purchased 

from Caliper (Hopkinton, MA). HepG2 cell line and B16F10 cell line were purchased 

from American Type Culture Collection (ATCC; Manassas, VA). MDA-MB-231 cell line 

was a kind gift from Dr. Jing Li, Karmanos Cancer Institute (Detroit, MI). Anti-luciferase 

siRNA (pGL4) (antisense sequence 5′-GAAGUGCUCGUCCUCGUCCUU-3′) and 
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negative control siRNA (ON-TARGET plus Non-targeting siRNA #1) were purchased 

from Dharmacon (Lafayette, CO). Dendritic PG (5 kDa) was purchased from Johannes 

Gutenberg-Universität Mainz, Germany. Lipofectamine™ RNAiMAX transfection 

reagent was purchased from Invitrogen (Grand Island, NY). Norspermine, phenyl 

chloroformate (99%), and heptafluorobutyric acid (HFBA) were from Alfa Aesar (Ward 

Hill, MA). Pyridine (DriSolv®, anhydrous) was from EMD Millipore (Billerica, MA). 4-

(Dimethylamino)-pyridine (DMAP) and benzoylated dialysis tubing (nominal molecular 

weight cut-off 2,000 Da) were from Sigma-Aldrich (St. Louis, MO). Hydrogen chloride 

(5-6 N solution in 2-propanol) was from Acros Organics (Fair Lawn, NJ). All other 

reagents and chemicals were obtained from Fisher Scientific or VWR International 

unless otherwise noted.  

 

4.2.2. Cell culture 

B16F10 mouse melanoma cells were cultured in DMEM supplemented with 10% 

FBS. MDA-MB-231 human breast cancer cells and B16F10-luc2 cells were cultured in 

RPMI supplemented with 10% FBS. HepG2 cells and MDA-MB-231-luc2 cells were 

cultured in EMEM supplemented with 10% FBS. All cells were kept at 37 °C in incubator 

with 5% CO2.  

 

4.2.3. Polymer analysis 

NMR spectra were recorded on Mercury-400 MHz Spectrometer and chemical 

shifts (δ) were expressed in ppm. IR spectra were recorded using JASCO FT/IR 4200 

spectrometer (Easton, MD). Weight-average molecular weight (Mw) and polydispersity 
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index (PDI) of polymers were determined by Size Exclusion Chromatography (SEC) 

using Viscotek GPCmax chromatography system equipped with a refractive index 

detector and a light scattering detector. The columns used were single-pore AquaGelTM 

columns (cat# PAA-202 and PAA-203, PolyAnalytik, London, ON, Canada). OmniSEC 

software was used for chromatographic data processing. Sodium acetate buffer (0.3 M, 

pH 5) was used as the mobile phase at a flow rate of 0.3 mL/min. Amine content in the 

PG derivatives was determined by elemental analysis of C, H, N, Cl (Atlantic Microlabs 

Inc., Norcross, GA). The chemical formula of PG was assumed to be (C3H5O2)n-(OH)64 

for the calculation of amine content in PG-BEN, norspermine-conjugated PG (PG-Nor) 

and amine-terminated PG (PG-NH2) using the results of elemental analysis.   

 

4.2.4. Synthesis of PG derivatives 

Synthesis of PG phenyl carbonate and PG-NH2. PG phenyl carbonate and PG-

NH2 were synthesized following published procedures [302, 305]. PG (5 kDa, 1 g, 13.5 

mmol OH-groups) was dissolved in 8 mL anhydrous pyridine and added dropwise into 

phenyl chloroformate (2.44 g, 15.6 mmol) solution in 20 mL pyridine. The reaction 

mixture was stirred for 16 h in ice bath. Additional chloroform and water were added at 

the end of the reaction until the formed solid product was dissolved. The organic layer 

was extracted three times with chloroform and then dried with MgSO4. The solution was 

then concentrated and dialyzed against chloroform to give the PG phenyl carbonate 

(2.71 g, yield 93.1%).  

PG-NH2 was synthesized by a conversion of hydroxyl groups to amine groups 

following published procedure [302, 305]. Briefly, PG (5.2 g, 70.72 mmol OH-groups) 
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was dissolved in pyridine (40 mL), and a solution of methanesulfonyl chloride (9.3 g, 

81.3 mmol) in pyridine (7 mL) was added dropwise. The reaction mixture was kept in ice 

bath and stirred for 16 h. Excess amount of ice was then added to the reaction mixture 

until a yellow solid precipitated. The solid product was washed with water three times, 

dissolved and dialyzed against acetone to give a brown product of PG 

methanesulfonate ester (8.94 g, yield = 83.5%). PG methanesulfonate ester (8.94 g, 

59.05 mmol methanesulfonate groups) was dissolved in DMF (100 mL) and NaN3 

(17.93 g, 275.84 mmol) was added. The suspension was then kept at 60 °C for 3 days. 

The reaction mixture was filtered and the yellowish filtrate was concentrated by rotary 

evaporator. The raw product was then dissolved and dialyzed against CHCl3 to give the 

final product of PG-N3 (5.75 g, yield = 99%).  

PG-N3 (5.75 g, 58.54 mmol N3-group) was dissolved in THF (60 mL) and 

triphenylphosphine (PPh3, 15.34 g, 58.54 mmol) and H2O (5 mL) were added. The 

reaction mixture was kept stirring for 16 h while 50 mL of water was added dropwise 

during the reaction. The mixture was then concentrated by rotary evaporation, followed 

by extraction with CHCl3. The aqueous layer was concentrated to dryness by rotary 

evaporator, then dissolved and dialyzed against methanol to give a brown viscous PG-

NH2 (3.94 g, 93%). 1H-NMR (400 MHz, MeOD): δ = 3.3-3.8 (m, CH and CH2 of PG), 

2.52-3.18 (m, -CH2-NH2 of PG). 

Synthesis of PG-BEN and PG-Nor. Solution of 200 mg PG phenyl carbonate 

(0.93 mmol phenyl carbonate group) in pyridine (15 mL) was added dropwise to a 

mixture of BENSpm (1.5 g, 6.14 mmol) or norspermine (1.75 g, 9.3 mmol) and DMAP 
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(1.1 mg, 0.009 mmol) in pyridine (10 mL) at 0 °C. The reaction mixture was then kept 

under reflux for 2 days. Solvent was removed by rotary evaporator and the concentrate 

was dialyzed against methanol to give the final product PG-BEN (230 mg, yield 67.6%) 

or PG-Nor (130 mg, yield 50.3 %). Free amine groups on PG-BEN and PG-Nor were 

then converted into HCl salt by first dissolving PG-BEN or PG-Nor in ethanol and then 

precipitating out the corresponding salt by adding HCl (1.2 eq., 5-6 N HCl in 2-

propanol). The precipitate was then washed three times with ethanol and dried in 

vacuum to afford the final product PG-BEN.HCl and PG-Nor.HCl. 1H-NMR (400 MHz, 

D2O) of PG-BEN: δ = 1.17 (a1, CH3-CH2-NH-), 1.29 (a2, CH3-CH2-N-(COO-PG)-), 1.60-

2.22 (c1,c2, -CH2-CH2-NH-), 2.90-3.47 (b1,b2, -CH2-NH-), 2.89-4.03(PG). 1H-NMR (400 

MHz, D2O) of PG-Nor: δ = 1.91 (a1, -CH2-CH2-NH-COO-), 2.11 (a2, -CH2-CH2-NH-), 

2.94-3.70 (b1, b2, -CH2-NH-), 2.94-4.33 (m, CH and CH2 of PG).  

 

4.2.5. Buffering capacity 

Buffering capacity of the synthesized PG derivatives was determined by acid-

base titration as previously described (Chen et al., 2009). Briefly, 6 mL solution of each 

PG derivatives (10 mM total amine concentration) was adjusted to pH 4.0 by 1M HCl, 

and then the solution was titrated to pH 11.0 using 0.1 M NaOH and 1M NaOH. The pH 

after each addition of NaOH was recorded by pH meter (Fisher Science EducationTM, 

Fisher Scientific, Pittsburgh, PA). 

 

4.2.6. EtBr exclusion assay 
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The ability of the polycations to condense gWiz-Luc DNA or negative control 

siRNA into polyplexes was determined by EtBr exclusion assay by measuring the 

changes in EtBr/DNA or EtBr/siRNA fluorescence. DNA and siRNA solutions at a 

concentration of 20 µg/mL in 10 mM HEPES buffer (pH 7.4) were mixed with EtBr (1 

µg/mL) and fluorescence was measured and set to 100% using an excitation 

wavelength of 540 nm and an emission wavelength of 590 nm. Fluorescence readings 

were taken following a stepwise addition of PG derivatives solution, and the 

condensation curve for each PG derivative was constructed. PEI (25 kDa, branched) 

was used as positive control. 

 

4.2.7. Agarose gel retardation assay 

Twenty µL polyplexes of PG derivatives or PEI with 20 µg/mL gWiz-Luc DNA at 

different N/P ratios (0.5, 1, 2, 4, 8, 16) were loaded onto 0.8% agarose gel containing 

0.5 µg/mL EtBr. Samples were run for 60 min at 120V in 0.5× TBE running buffer. For 

siRNA polyplexes, 20 µL polyplexes of PG derivatives or PEI with 20 µg/mL negative 

control siRNA at different N/P ratios (0.25, 0.5, 1, 2, 4, 8) were loaded onto 2% agarose 

gel containing 0.5 µg/mL EtBr and run for 30 min at 75V. The gels were visualized 

under UV illumination on a KODAK Gel Logic 100 Imaging System. 

 

4.2.8. Particle size and zeta potential of polyplexes 

Hydrodynamic diameters and zeta potentials of PG derivatives/DNA polyplexes 

were determined using ZetaPlus Particle Size and Zeta Potential analyzer (Brookhaven 

Instruments). Scattered light was detected at 90° angle and 25 °C. Polyplexes were 
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prepared at desired N/P ratios (4, 8, 16, 32) by adding a pre-determined amount of 

polycation to the solution of plasmid DNA in 10 mM HEPES (pH 7.4) to achieve a final 

DNA concentration of 20 µg/mL (300 µL). For PG derivatives/siRNA polyplexes, 

optimized N/P ratio in transfection experiment was used (N/P ratios: PG-BEN/siRNA 7, 

PG-Nor/siRNA 10, PG-NH2/siRNA 24). The polyplexes were incubated for 30 min at 

room temperature and then diluted to 1.5 mL for size and zeta potential measurement. 

Mass of 325 per one phosphate group of nucleic acid was used in the calculations. 

 

4.2.9. Atomic force microscopy 

For atomic force microscopy (AFM), DNA polyplexes of PG derivatives and PEI 

were prepared at N/P ratio of 16 with DNA concentration of 20 µg/mL in 10 mM HEPES 

buffer (pH 7.4). AFM images were acquired by Nanoimaging Core Facility (College of 

Pharmacy, University of Nebraska Medical Center).    

 

4.2.10. Heparin displacement assay for siRNA polyplexes 

The relative stability of PG derivatives/siRNA polyplexes was tested by 

measuring siRNA release from the polyplexes in the presence of heparin. All siRNA 

polyplexes were prepared at w/w ratio of 7 at siRNA concentration of 20 µg/mL. 

Polyplexes were allowed to stabilize for 25 min and then the polyplex solutions were 

incubated with heparin for 10 min at different concentrations (0, 10, 20, 40, 80, 160, 240 

µg/mL). Samples were then loaded onto 2% agarose gel and run for 45 min at 75 V. 

The gel was visualized by a KODAK Gel Logic 100 Imaging System.  
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4.2.11. RNase digestion assay for siRNA polyplexes 

siRNA polyplexes of PG derivatives were incubated with increasing amount of 

RNase A for 30 min at 37 °C. Polyplexes were prepared as described in heparin 

displacement assay. To inactivate the RNase, samples were further incubated for 30 

min at 70 °C. Heparin (240 µg/mL) was then added to each sample for complete release 

of intact siRNA from the polyplexes. Twenty µL sample was loaded onto 2% agarose 

gel containing 0.5 µg/mL EtBr and run for 30 min at 75 V. The gel was visualized using 

a KODAK Gel Logic 100 Imaging System. 

 

4.2.12. Transfection 

All DNA transfections were conducted in 48-well plates. Cells were seeded at a 

density of 40,000 cells/well 24 h prior to transfection. On the day of transfection, cells 

were incubated with the polyplexes (2.35 µg/mL DNA) in media containing 10% FBS. 

After 4 h incubation, polyplexes were completely removed and the cells were 

maintained in complete culture medium for 24 h prior to measuring luciferase 

expression. The medium was discarded and the cells were lysed in 100 µL of 0.5× cell 

culture lysis reagent buffer (Promega, Madison, WI) for 30 min. To measure the 

luciferase content, 100 µL of 0.5 mM luciferin solution was automatically injected into 

each well of 20 µL of cell lysate and the luminescence was integrated over 10 s using 

Synergy 2 Microplate Reader (BioTek). Total cellular protein in the cell lysate was 

determined by the bicinchoninic acid (BCA) protein assay using calibration curve 

constructed with standard bovine serum albumin solutions (Pierce, Rockford, IL). 



www.manaraa.com

97 

 

 

Transfection activity was expressed as relative light units (RLU)/mg cellular protein ± 

SD of triplicate samples.  

For siRNA transfection, B16F10-luc2 cells and MDA-MB-231-luc2 cells were 

seeded at a density of 40,000 cells/well or 50,000 cells/well, respectively, in 48-well 

plates one day before transfection. Polyplexes and positive control Lipofectamine 

RNAiMAX lipoplexes were formed in serum-free Eagle's Minimum Essential Medium 

(EMEM) medium (for MDA-MB-231-luc2 cells) and RPMI medium (for B16F10-luc2 

cells). PG derivatives and siRNA were mixed at w/w 7 and incubated at room 

temperature for 20 min before use. Transfections were conducted with 100 nM siRNA 

for the polyplexes and 10 nM siRNA for the control RNAiMAX lipoplexes. The cells were 

incubated at 37 °C for 48 h and lysed for assaying luciferase activity. Transfection 

activity was expressed as the percentage of luciferase expression of untreated cells.  

 

4.2.13. Cytotoxicity 

Toxicity of polycations was evaluated by MTS assay. The cells were seeded in 

96-well microplates at a density of 10,000 cells/well. After 24 h, culture medium was 

replaced by 200 µL of serial dilutions of a polymer in medium with 10% FBS and the 

cells were incubated for 24 h. Polymer solutions were aspirated and replaced by a 

mixture of 100 µL serum-free media and 20 µL of MTS reagent (CellTiter 96® AQueous 

Non-Radioactive Cell Proliferation Assay, Promega). After 2 h incubation (MDA-MB-231 

cells) or 1.5 h incubation (B16F10 and HepG2 cells), the absorbance was measured at 

a wavelength of 490 nm. The relative cell viability (%) was calculated as 



www.manaraa.com

98 

 

 

[A]sample/[A]untreated × 100%. The IC50 were calculated as the polymer concentration that 

inhibits growth of 50% of cells relative to untreated cells using GraphPad Prism [263].  

 

4.2.14. Polyamine analysis by LC-MS/MS 

Intracellular levels of polyamines were quantified using AQUITY UPLC TQD 

system (Waters, MA) with IntelliStart program built in Masslynx 4.1 software. Ten µg/mL 

of BENSpm, SPM, SPD, and PUT were dissolved in water: acetonitrile (1: 1) and 

detected in MRM mode using positive electrospray ionization (ESI+): m/z (parent > 

daughter) 245.24 > 143.10 for BENSpm; 203.14 > 129.14 for SPM; 146.10 > 112.05 for 

SPD and 89.09 > 71.95 for PUT. Chromatographic separation was performed using 

ACQUITY UPLC BEH C18 Column (2.1 x 50 mm, 1.7 µm). A gradient solvent system 

consisting of 0.2% HFBA in water (solution A) and 0.2% HFBA in acetonitrile (solution 

B) was used and the gradient was increased from 5 to 95% of B over 5 min at a flow 

rate of 0.2 mL/min [306]. The polyamines eluted at the following elution times: 2.55 min 

(BENSpm), 2.44 min (SPM), 2.29 min (SPD) and 1.98 min (PUT). Standard curve for 

each polyamine was linear within the concentration range from 16 ng/mL to 2 µg/mL 

(correlation coefficient r2 > 0.96 for all). MDA-MB-231 cells were treated with 2.5 µg/mL 

BENSpm, 6 µg/mL PG-BEN (equiv. amount of 2.5 µg/mL BENSpm) for 72 h and then 

lysed in 5% perchloric acid at a concentration of 5×106 cells/mL. The supernatant of the 

cell lysate was then used for LC-MS/MS detection of polyamine levels. 

 

4.2.15. PG-BEN degradation 
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BENSpm release from PG-BEN was monitored by both LC-MS/MS and SEC. 

LC-MS/MS analysis for BENSpm content in cell lysate was conducted following 72 h 

treatment of MDA-MB-231 with 2.5 µg/mL BENSpm or 6 µg/mL PG-BEN. PG-BEN 

degradation was also evaluated at extreme conditions following incubation for 48 h at 

90 °C in 0.1 M HCl or 0.1 M NaOH solution. Changes in SEC chromatograms of 

BENSpm and PG-BEN were monitored using conditions described in earlier section 

(4.2.2). 

 

 

4.3 Results and Discussion 

4.3.1 Synthesis and characterization of PG derivatives 

PG-BEN and PG-Nor were synthesized following a modified published procedure 

for the synthesis of PG-oligoamine conjugates (Scheme 6) [302]. Surface hydroxyl 

groups of PG were first activated using phenyl chloroformate to form PG phenyl 

 

Scheme 6. Synthesis of PG-BEN, PG-Nor 
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carbonate. This activated form of PG was then reacted with amine groups of BENSpm 

and norspermine to form PG-BEN and PG-Nor. Because both BENSpm and 

norspermine have four reactive amines in their structure, there was a possibility of 

intermolecular cross-linking between multiple PG molecules. Our goal was to minimize 

the extent of any cross-linking reactions. We have thus used a large excess of BENSpm 

and norspermine in the reaction. The use of excess polyamine also allowed us to 

maximize the content of polyamines per PG molecule because of the decreased 

likelihood that one BENSpm or norspermine molecule would react with multiple 

hydroxyls in a single PG molecule. PG-NH2 was synthesized as a control polymer for 

this study, by conversion of the PG surface hydroxyl groups to primary amines (Scheme 

7).  

 

The FT-IR analysis qualitatively verified successful conjugation of the polyamines 

to PG (Figure 18a and b). The signal in the IR spectrum of PG-BEN and PG-Nor at 

1730-1690 cm-1 (C=O stretch) indicated the presence of carbonyl bonds. The signal of 

PG-BEN, PG-Nor and PG-NH2 at 1650-1515 cm-1 (N-H bend) confirmed the presence 

of amine groups. These results confirmed that BENSpm and norspermine were 

 

Scheme 7. Synthesis of PG-NH2 

 



www.manaraa.com

101 

 

 

successfully conjugated to the surface of PG via carbamate linkage.  

 

SEC was used to confirm that no crosslinking occurred during conjugation of 

BENSpm and norspermine to PG (Figure 18c). The determined molecular weights were 

nearly identical for PG-BEN (12.9 kDa) and PG-Nor (13.0 kDa) and represented an 

almost 4 kDa increase over the parent PG. Narrow PDI and absence of a peak or a 

 

Figure 18. Characterization of PG derivatives. (a) FT-IR spectra of PG-BEN (blue) 
and PG-Nor (green). (b) FT-IR spectra of PG-NH2 (blue) and PG (green). (c) Size 
exclusion chromatographs.  
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shoulder at lower retention volumes indicated that no significant crosslinking occurred in 

either of the conjugation reactions.  

 
We then used elemental analysis (C, H, N, Cl) to determine the amine content in 

the synthesized PG derivatives. Based on the elemental analysis, we calculated that on 

average, there were 23 BENSpm molecules and 27 norspermine molecules attached to 

a single PG molecule (Table 5). These results correspond to 36% and 42% modified PG 

hydroxyls, respectively. In comparison, direct conversion of the hydroxyls to primary 

amines in PG-NH2 resulted in 92% hydroxyl conversion (Table 5). Steric hindrance is 

the most likely explanation for the lower conjugation efficiency in case of BENSpm and 

norspermine. We then used NMR to analyze whether BENSpm and norspermine were 

attached to PG via a single amine or via multiple amines on a single polyamine 

molecule (Figure 19). Taking advantage of the differences in NMR shifts of the terminal 

methyl in BENSpm after conjugation to PG, we observed that the integral intensities of 

a1 and a2 were nearly equal (a1: a2 1.00: 1.03). Based on the assumption that 

BENSpm conjugation to PG mainly occurred at the terminal amine groups, the ratio of 

a1: a2 suggests that on average, only one terminal amine of BENSpm was attached to 

Table 5. Characterization of the synthesized PG derivatives. 

Polymer Number of Nor or 
BEN per PG 

% of modified PG 
hydroxyls 

PG-NH2 -- 92% 

PG-Nor 27 42% 

PG-BEN 23 36% 
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PG. Because of insufficient NMR signal separation, our analysis could not determine 

whether any non-terminal secondary amines in BENSpm participated in the conjugation 

to PG. Similar analysis for PG-Nor using signals of the methylenes in β position to the 

terminal primary amines, led to similar conclusion as suggested by the ratio of the a1: 

a2 = 1.95: 1.00 (Figure 19).  

Strong buffering capacity of polyamine gene delivery vectors has been 

recognized as an important factor for intracellular trafficking of polyplexes, such as to 

enhance endosomal escape and to avoid the trafficking to degradative lysosomes[307, 

308]. Although the correlation between buffering capacity and enhanced transgene 

activity is under debate [309, 310], buffering capacity of polyamine vector remains an 

important property for gene delivery. Here, we measured the buffering capacities of PG 

derivatives in comparison with PEI (Figure 20). The results of titration curves showed 

that, at the pH range between 5.0 to 7.4 that corresponds to the extracellular 

environment and endosomal environment, the buffering capacity of PG-BEN and PG-

Nor is stronger than PG-NH2 and PEI. One explanation is that there are different types 

of amines in the different PG derivatives and PEI (pKa secondary amine < primary 

amine), and the protonation of an amine group electrostatically suppresses the 

protonation of neighboring amines [311], thus leads to the different pattern of titration 

curves between each PG derivatives and PEI. 
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Figure 19. 1H-NMR spectra of PG-BEN (upper panel) and PG-Nor (lower panel). 
PG peak: CH and CH2 in PG backbone.  
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4.3.2 DNA/siRNA condensation and polyplex characterization 

All the synthesized PG derivatives were able to condense DNA as documented 

by the results of the EtBr exclusion assay and agarose gel electrophoresis (Figure 21a 

and b). PG-BEN and PG-Nor were comparably efficient and condensed DNA at N/P 

ratios above 1. Control PEI required higher N/P ratios to fully condense DNA (N/P > 2), 

as did PG-NH2 (N/P > 4). The strong DNA condensing ability of PG-BEN and PG-Nor 

are the result of high surface density of amines in the conjugates. As expected from the 

ability to condense DNA, all PG derivatives form positively charged polyplexes (Figure 

 

Figure 20. Acid-base titration curves of PG derivatives. 
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21d). The polyplexes were smaller than 110 nm at all studied N/P ratios as measured 

by dynamic light scattering (Figure 21c).  

 

AFM was used to study the morphology of the DNA polyplexes. As shown in 

Figure 22, all polyplexes of PG derivatives were imaged at a constant N/P ratio of 16. 

PG-Nor/DNA polyplexes showed the most uniform particle sizes around 60-70 nm, with 

all the polyplexes spherical and homogeneously distributed. Similar result was also 

observed for PG-BEN/DNA polyplexes, where spherical particles were observed with 

 

Figure 21. Physicochemical characterization of DNA polyplexes of PG derivatives.  
DNA condensation by (a) EtBr exclusion and (b) agarose gel eletrophoresis of PG 
derivatives and PEI polyplexes in 10 mM HEPES (pH 7.4); and dependence of (b) 
hydrodynamic particle size and (c) zeta potential of the polyplexes on different N/P 
ratios. 
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sizes around 50-80 nm. Interestingly, one PG-BEN/DNA polyplex showed DNA release 

on the surface of the particle (indicated by arrow head in Figure 22), demonstrating the 

need for higher N/P ratio of PG-BEN to achieve complete DNA condensation. PG-

NH2/DNA polyplexes showed different morphology than PG-BEN and PG-Nor 

polyplexes, with DNA release observed for almost all particles. This result indicated the 

ineffectiveness of PG-NH2 to condense DNA even at N/P ratio of 16. DNA release was 

also observed from some PEI polyplexes, while the majority of PEI polyplexes were 

spherical particles with sizes around 40-70 nm. The fact that smaller sizes of polyplexes 

were observed from AFM than from dynamic light scattering (DLS) is a normal 

phenomenon that can be explained by the difference of the techniques: in DLS 

measurement, small polyplexes with weak scattering could be masked by the strong 

scattering from bigger polyplex aggregates, therefore DLS yielded higher value of 

particle size than AFM [312]. 
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Oppositely, although all the PG derivatives were able to sufficiently bind siRNA at 

lower N/P ratios (N/P ≥ 1 for PG-BEN and PG-Nor; N/P > 2 for PEI and PG-NH2) as 

shown in EtBr exclusion assay and agarose gel retardation assay (Figure 23a and b), 

the PG/siRNA polyplexes showed much larger distribution in size and very small 

positive charge, with zeta potential lower than 10 mV for all polyplexes (Figure 23c and 

 

Figure 22. AFM images of different DNA polyplexes. All polyplexes were prepared at a 
N/P ratio of 16. Arrow heads indicate plasmid DNA released from the polyplexes.  
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d). The siRNA polyplexes were further analyzed by heparin replacement assay and 

RNase digestion assay (Figure 24). As shown in Figure 24 (upper panel), PG-

Nor/siRNA polyplexes were the most stable, with dissociation occurred at heparin 

concentration of 160 µg/mL, which is 8-fold the amount of siRNA presented in the 

polyplexes. PG-BEN and PG-NH2 polyplexes showed similar stability, with partial 

release of the siRNA occurred at heparin concentration of 80 µg/mL. These results 

indicated strong interactions between siRNA and all PG derivatives. However, result 

from RNase digestion assay showed an opposite trend (Figure 24, lower panel) that 

PG-NH2 provided better protection for siRNA against RNase A, with complete siRNA 

degradation occurred at RNase concentration higher than 200 µg/mL. On the other 

hand, PG-BEN and PG-Nor showed lower protection ability against RNase A, with the 

complete siRNA degradation observed at RNase concentration higher than 40 µg/mL. 

This result suggests that, opposite to the ineffectiveness of condensing DNA, PG-

NH2/siRNA polyplexes may result in improved knockdown efficiency of the cargo siRNA 

compared with PG-BEN and PG-Nor polyplexes, due to the improved protection against 

RNase. These results indicates that, due to the structural difference of siRNA such as 

lower charge density and higher stiffness compared with DNA [313], PG-BEN and PG-

Nor may not be able to fully condense siRNA molecules in comparison with forming 

DNA polyplexes. 
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Figure 23. Physicochemical characterization of siRNA polyplexes of PG derivatives. 
(a) EtBr exclusion assay in 10 mM HEPES (pH 7.4); (b) agarose gel retardation 
assay of siRNA polyplexes at different N/P ratios; (c) hydrodynamic particle size and 
(d) zeta potential of the polyplexes at fixed N/P ratio (PG-BEN/siRNA 7, PG-
Nor/siRNA 10, PG-NH2/siRNA 24). 
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4.3.3 Transfection 

Transfection activity of the PG-BEN and PG-Nor polyplexes was first measured 

in the presence of 10% FBS in B16F10 cells using luciferase reporter plasmid (Figure 

25a). The PG-BEN and PG-Nor polyplexes showed consistently higher transfection 

activity than PG-NH2 polyplexes. The transfection efficiency of PG-BEN and PG-Nor 

polyplexes was fully comparable or better than that of the control PEI polyplexes. These 

results demonstrate that the drug-based PG-BEN conjugate can protect DNA in the 

presence of serum and facilitate DNA delivery to cells, thus fulfilling its intended function 

as a gene delivery vector.  

Even though PG-BEN and PG-Nor were highly efficient in DNA transfection, they 

exhibited poor ability to deliver siRNA (Figure 25b and c). Both PG-BEN and PG-Nor 

 

Figure 24. Agarose gel electrophoresis of siRNA polyplexes against heparin 
displacement (upper panel) and recovery of intact siRNA from the polyplexes 
challenged with RNase A (lower panel). Free siRNA and siRNA treated with RNase A 
(10 µg/mL) were loaded as references. 
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polyplexes with siRNA mediated only negligible levels of silencing (~11%) of the 

luciferase gene in MDA-MB-231-Luc2 cells. In contrast, PG-NH2 which demonstrated 

only low DNA transfection was highly active at delivery of siRNA. The levels of 

luciferase silencing by PG-NH2 approached levels of a specialized commercial siRNA 

transfection reagent LipofectamineTM RNAiMAX. This result confirms finding of many 

previous studies, which show that the properties that make for an efficient DNA delivery 

agent, are not necessarily the same as those for efficient siRNA delivery agent. It is 

likely that it is the lower binding affinity of PG-NH2 to nucleic acids as suggested by the 

requirement for higher N/P ratios to condense DNA (Figure 21a) that is beneficial for 

siRNA delivery. In contrast, the affinity may not be sufficient to protect DNA and mediate 

intracellular DNA transport into nucleus [314, 315]. 
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4.3.4 Cytotoxicity 

 

Figure 25.  Transfection activity of polyplexes. (a) Luciferase gene transfection in 
B16F10 cells measured 24 h after 4 h incubation of cells with the DNA polyplexes in 
10% FBS. Results are shown as mean relative light unit (RLU)/mg protein ± SD (n=3). 
siRNA silencing of luciferase expression in  (b) B16F10-Luc2 cells and (c) MDA-MB-
231-Luc2 cells stably expressing the luciferase gene. Results are expressed as 
percentage of (RLU)/mg protein ± SD (n=4) compared with untreated cells. 



www.manaraa.com

114 

 

 

The cytotoxicity of PG-BEN, PG-Nor and PG-NH2 was tested in MDA-MB-231, 

B16F10 and HepG2 cells (Figure 26). HepG2 cells have been established as a reliable 

predictor of human hepatotoxicity and are thus widely used for in vitro cytotoxicity 

testing [316-318]. Because of the anticancer activity of BENSpm, we have tested 

whether its presence in PG-BEN imparts selective toxicity towards cancer cells by 

measuring toxicity also in MDA-MB-231 and B16F10 cancer cells. Indeed, PG-BEN was 

11-times more toxic towards MDA-MB-231 cancer cells and 3.4-times more toxic 

towards B16F10 cancer cells than towards HepG2 cells, as determined from the ratios 

of the respective IC50 values. In contrast, control PEI showed almost no selective 

toxicity towards the two cancer cell lines with its IC50 ratios between 1.2 and 1.3. PG-

Nor and PG-NH2 demonstrated intermediate selectivity with IC50 ratios of 5.2 and 6.1 in 

MDA-MB-231 and 2.7 and 1.5 in B16F10, respectively. 
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Toxicity of polycations is strongly dependent on the number of protonated 

amines. It is thus informative to compare toxicity IC50 values also in terms of molar 

concentrations of amines. While PG-BEN is 7.3-times less toxic than PEI and similarly, 

 

Figure 26. Toxicity of PG-BEN and PG-Nor. IC50 values in MDA-MB-231, B16F10 
and HepG2 cells determined by MTS assay expressed in (a) µg/mL of the polycation 
and (b) µM amino groups. (c) Summary of the results from (a) and (b). 
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PG-Nor and PG-NH2 show about 3-times lower toxicity than PEI when measured in 

µg/mL, when expressed in terms of molarity of the amines, the picture changes 

substantially (Figure 26b). In such case, PEI becomes the least toxic among the tested 

polycations with its IC50 values 5-10-fold higher than PG-BEN and PG-Nor in MDA-MB-

231 and 2-4-fold higher in B16F10. In HepG2 cells, the difference between IC50 (µM) 

values of PEI and PG derivatives were negligible with the ratios between 0.6 and 1.1. 

These results suggest that PG-BEN may have useful anticancer activity that cannot be 

fully explained by its polycationic character. The results also emphasize the importance 

of a proper selection of units when comparing toxicity of polycations with different 

chemical structures.  
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4.3.5 Effect of PG-BEN treatment on cellular polyamine metabolism. 

After confirming solid transfection activity of PG-BEN polyplexes with plasmid 

DNA, we investigated whether the mechanism of the observed anticancer effect of PG-

BEN is through its effect on polyamine metabolism similar to the parent BENSpm. 

BENSpm down-regulates natural polyamine pathway in many types of cancer cells and 

that leads to cell growth inhibition and apoptosis. In order to analyze the effect of 

BENSpm and PG-BEN on the cellular polyamine metabolism, an LC-MS/MS method 

was developed to quantitatively analyze differences in the levels of different polyamines 

in the polyamine metabolic pathway. LC-MS/MS does not require any pre-column 

derivatization of the polyamines and provides superior sensitivity and reproducibility in 

the analysis of structurally similar natural polyamines [176, 319, 320]. The linearity (r2 > 

 

Figure 27. Effect of PG-BEN treatment on polyamine levels in MDA-MB-231 cells. 
The cells were treated with 6 µg/mL PG-BEN or equivalent concentration of free 
BENSpm (2.5 µg/mL) for 72 h, the cells were lysed in 5% perchloric acid and 
polyamine levels in the lysate analyzed by LC-MS/MS. Results are shown as mean 
polyamine levels in ng/5×106 cells ± SD (n=3). 
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0.96) of the method was confirmed in the concentration range from 16 ng/mL to 2 µg/mL 

for all the analyzed natural polyamines, BENSpm, and norspermine.  

 

The effect of PG-BEN and BENSpm on polyamine metabolism was determined 

in MDA-MB-231 cells. The cells were treated with BENSpm or PG-BEN for 72 h and the 

levels of polyamines in cell lysate were analyzed by LC-MS/MS (Figure 27). The results 

show that BENSpm (2.5 µg/mL) down-regulated all natural polyamines as expected. In 

contrast, PG-BEN treatment had no effect on the levels of SPM and SPD and resulted 

only in decreased levels of PUT. This finding suggests that BENSpm was probably not 

efficiently released from PG-BEN. This hypothesis was confirmed when no detectable 

amount of free BENSpm were observed in cells treated with PG-BEN, compared with 

262 ng/5×106 cell of BENSpm in BENSpm treated cells (Figure 28). Moreover, no 

BENSpm release was observed by SEC after incubation in both acidic and basic 

 

Figure 28. BENSpm content in MDA-MB-231 cell lysate (right panel) and size 
exclusion chromatography of PG-BEN and free BEN (left panel).  
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solutions, indicating negligible hydrolysis capability of the polymer (Figure 28). Our 

results contradict previous report in which oligoamine was enzymatically released from 

PG conjugates [302]. Most likely explanation for the discrepancy is the use of different 

polyamine and insufficient levels of enzymes in MDA-MB-231 cells to cleave the 

carbamate bond in PG-BEN. 

 

4.4 Conclusions 

We have conjugated anticancer agent BENSpm to dendritic PG and 

demonstrated the utility of the conjugate for gene delivery. Compared with the lipid 

based BENSpm prodrug Lipo-SS-BEN that we discussed in Chapter 3, PG-BEN 

demonstrated ~10-75 fold increase in transfection efficiency in B16F10 cells. Because 

the sizes and zeta potential of PG-BEN polyplexes are comparable to Lipo-SS-BEN 

lipoplexes (sizes of polyplexes ~74-109 nm compared with ~ 99 nm of lipoplexes; zeta 

potential of polyplexes ~26-44 mV compared with ~31 mV of lipoplexes), the increased 

transfection capability of PG-BEN is most likely the result of improved extracellular 

stability of the carbamate linker in PG-BEN, compared with the dithiobenzyl carbamate 

linker in Lipo-SS-BEN. However, compromised drug function of polyamine depletion in 

PG-BEN treated cells documented by LC-MS/MS analysis indicated inefficient release 

of BENSpm from the PG-BEN vector. Therefore, alternative linker chemistry will have to 

be developed to take full advantage of BENSpm anticancer activity in BENSpm-based 

gene delivery vectors.  

Moreover, PG-BEN showed favorable cytotoxicity profile by exhibiting selective 

toxicity towards breast cancer cells relative to hepatocytes. The selective toxicity, 
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however, was not fully related to the known mechanism of action of BENSpm through 

its effects on polyamine metabolism. The mechanism of the selective toxicity of PG-

BEN towards cancer cells is also worth investigating. 
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CHAPTER 5 

POLYCATIONIC BENSPM PRODRUG USING SELF-IMMOLATIVE LINKER AS 

DUAL DRUG/GENE DELIVERY SYSTEM 

 

5.1 Introduction 

Gene therapy shows promise for cancer treatment, however, this potentially 

powerful therapeutic modality is greatly hampered by the lack of desirable drug delivery 

systems that can accommodate various agent payloads and overcome multiple barriers 

such as to prevent degradation, to limit susceptibility to serum, and to improve 

bioavailability [321]. Polyplexes continue to gain strength as promising gene delivery 

vectors but the relatively low transfection activity and high toxicity associated with 

polycations hamper their success in clinical applications [322, 323]. Traditional ways to 

address the problems include combining the therapeutic gene with small-molecule 

drugs to enhance the therapeutic activity of the transgene [324-326]. For example, 

Wang and colleagues developed a nanoparticle system for co-delivery of paclitaxel with 

an interleukin-12-encoded plasmid. The authors demonstrated enhanced gene 

transfection as well as superior tumor suppression both in vitro and in vivo in tumor 

models [67]. A typical way to address the current problems with toxicity of polyplexes is 

to design biodegradable polycations that degrade into less toxic byproducts [327, 328]. 

Incorporation of intracellular stimuli-triggered degradation is among the most favored 

strategies in designing polycationic gene delivery system [329]. Examples include (i) 

pH-sensitive polymers containing hydrolytically sensitive bonds such as esters, (ii) 
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redox-responsive polymers containing disulfide bonds that are cleaved in the reductive 

environment of the cytoplasm, and (iii) enzymatically cleavable polymers [330-334]. 

The field of combination drug/nucleic acid carriers is quickly developing, with 

emerging novel designs of delivery vectors. Besides traditional polymeric delivery 

systems, new concepts such as self-assembled nucleic acid nanostructures [335], 

single nucleic acid encapsulation [336], multilayered polymer-nucleic acids nanocapsule 

[337] as well as other multifunctional nanocarriers [338] are drawing increasing 

attention. In order to achieve both drug/gene combination delivery and designing 

biodegradable delivery vector, we proposed a novel design of dual delivery vectors that 

not only deliver therapeutic nucleic acids but also utilizes pharmacologic effect of a 

cationic drug to augment the activity of the nucleic acid. To achieve this, we synthesized 

polycations based on a polyamine analogue BENSpm, which was originally developed 

to treat cancer. BENSpm contains four secondary amines that can provide positive 

charges under physiological conditions to bind with nucleic acids via electrostatic 

interactions. Thus, conjugation of BENSpm with a lipid or a polymer by appropriate 

linker can provide a prodrug gene delivery carrier, which can be engineered to release 

free BENSpm under physiological conditions. In the previous chapters (Chapter 3 and 

Chapter 4), Lipo-SS-BEN demonstrated satisfactory prodrug function, however, the 

gene delivery function was compromised by the instability of the vector. We suspected 

that the breakage of dithiobenzyl carbamate linker occurred before the cellular uptake. 

Therefore, we explored a more stable linker strategy. PG-BEN with carbamate linker 

between the PG core and BENSpm showed superior transfection efficiency, however, 

the release of BENSpm was negligible in the intracellular space. In order to improve the 
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dual function of the BENSpm base drug/gene delivery vector, a better linkage strategy 

is further explored in this chapter. We decided to use bis(2-hydroxyethyl) disulfide as a 

self-immolative linker to synthesize polymer prodrugs of BENSpm. The rationale behind 

this design is that incorporating disulfide bond into the prodrug vector allows selective 

degradation in the reducing intracellular space and that after the disulfide bond 

cleavage, the intermediate will further undergo slow intramolecular cyclization to give 

free BENSpm [339].  

 

5.2 Materials and Methods 

5.2.1 Materials 

Plasmid DNA containing luciferase reporter gene (gWiz-Luc) was from Aldevron 

(Fargo, ND). Dulbecco’s modified eagle medium (DMEM), Dulbecco’s phosphate 

buffered saline (PBS), Hanks' balanced salt solution (HBSS), RPMI 1640 medium, fetal 

bovine serum (FBS), L-glutamine, Penicillin-Streptomycin and Snakeskin dialysis 

tubing (molecular weight cutoff = 3.5 kDa) were from Thermo Scientific (Waltham, MA). 

G418 sulfate was from Mediatech, Inc. (Manassas, VA). Eagle's minimum essential 

medium (EMEM) was from Corning (Manassas, VA). HepG2 cell line was purchased 

from American Type Culture Collection (ATCC; Manassas, VA). MDA-MB-231 cell line 

was a kind gift from Dr. Jing Li, Karmanos Cancer Institute (Detroit, MI). B16F10 cell 

line was a kind gift from Dr. Rakesh Singh, University of Nebraska Medical Center 

(Omaha, NE). HEK 293T cell line was a kind gift from Dr. Gensheng Wu, Karmanos 

Cancer Institute (Detroit, MI). Human epithelial osteosarcoma U2OS cell line was 

purchased from Thermo Scientific (Waltham, MA). DharmaFECT-4 siRNA transfection 
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reagent, siGenome SMARTpool siRNAs: PLK-1 (polo-like kinase 1), sHH (sonic 

hedgehog), Bcl-2 and negative control siRNA (ON-TARGET plus Non-targeting siRNA 

#1) were purchased from Dharmacon (Lafayette, CO). SignalSilence® siRNAs: Akt-2, 

survivin, PARP and Stat-3 were from Cell Signaling Technology (Beverly, MA). Hif-1α 

siRNA was purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 1,1’-

carbonyldiimidazole (CDI), bis(2-hydroxyethyl) disulfide (DSOH), spermidine 

trihydrochloride, putrescine dihydrochloride and polyethylenimine (PEI, 25 kDA, 

branched) were purchased from Sigma-Aldrich (St. Louis, MO). Dichloromethane 

(99.9%, extra dry, AcroSeal™), tetrahydrofuran (THF, 99.85%, extra dry, AcroSeal™), 

5-sulfosalicylic acid dihydrate (SSA), 1,7-diaminoheptane (DAH), dansyl chloride (5-

dimethylamino-1-naphthalenesulfonyl chloride, 98%) and 1,6-hexanediol were from 

Acros Organics (Fair Lawn, NJ). L-Proline was from Alfa Aesar (Ward Hill, MA). 

Spermine (SPM) was from MP BiomedicalsTM (Santa Ana, CA). BENSpm was 

synthesized as previously described [155]. Recombinant human TRAIL/Apo2L protein 

was purchased from PeproTech (Rocky Hill, NJ). All other reagents and chemicals were 

obtained from Fisher Scientific or VWR International unless otherwise stated.  

 

5.2.2 Synthesis and characterization of polymeric BENSpm prodrugs 

Polymer analysis. NMR spectra were recorded on 400MHz Bruker NMR 

spectrometer and chemical shifts (δ) were expressed in ppm. The composition of the 

polymers was determined by elemental analysis from N, S, H and Cl content (Atlantic 

Microlab, Inc., Norcross, GA). Weight-average molecular weight (Mw) and polydispersity 
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index (PDI) of polymers were determined by Size Exclusion Chromatography (SEC) 

using Agilent Technologies 1260 Infinity GPC-SEC system Agilent 1260 Infinity 

equipped with isocratic pump, degasser, variable wavelength detector, thermostated 

column compartment and autosampler from Agilent Technologies, Inc. (Santa Clara, 

CA). Wyatt miniDWANTM TREOS multi-angle light scattering detector and Optilab® T-

rEX™ differential refractometer (Wyatt Technology Corporation, Santa Barbara, CA) 

were used to determine the molecular weights. The columns used were single-pore 

AquaGelTM columns PAA-202 and PAA-203 from PolyAnalytik (London, ON, Canada). 

Sodium acetate buffer (0.3 M, pH 5.0) was used as the mobile phase at a flow rate of 

0.3 mL/min. Astra 6.1 software was used for chromatographic data processing.   

Synthesis of disulfide-containing BENSpm carbamate prodrug (DSS-BEN). 

Reactions were carried out under inert atmosphere with the exclusion of water. Briefly, 

DSOH (403.2 mg, 2.6 mmol) was dissolved in the mixture of CH2Cl2 (3.3 mL) and THF 

(0.7 mL). Then, a solution of CDI (887.5 mg, 5.5 mmol) in 3.5 mL CH2Cl2 was added 

dropwise to the ice cold solution of DSOH under nitrogen, and the reaction was kept on 

thawing ice for 1 h.  A solution of BENSpm (2.6 mmol, 640 mg) in CH2Cl2 was then 

added and the reaction was kept reflux for 18 h at 45 °C. The reaction mixture was then 

allowed to cool down to room temperature and the final product was precipitated out in 

ether (25 mL) and washed twice with 20 mL ether. The residual solvents were removed 

under vacuum. Water (25 mL) was then added and 6 N HCl was added dropwisely until 

the material dissolved completely. The product was further dialyzed in 3.5 L water using 

dialysis tubing with molecular weight cutoff = 3.5 kDa. The solvent was changed three 

times against water with pH adjusted to 4.0 using HCl and finally dialyzed against 
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distilled water. The product was then freeze-dried. A total of 371.8 mg of DSS-BEN 

hydrochloride was obtained (yield= 34.2%). 

 Synthesis of non-reducible BENSpm carbamate prodrug (DCC-BEN). Reactions 

were carried out under inert atmosphere with the exclusion of water. To a solution of 

1,6-hexanediol (437.3 mg, 3.7 mmol) in 15 ml CH2Cl2 and 1 mL THF, a solution of CDI 

(1,260 mg, 7.77 mmol) in 5 mL CH2Cl2 was added dropwise under stirring. The reaction 

was kept on thawing ice bath for 1 h and 10 mL solution of BENSpm (904 mg, 3.7 

mmol) in CH2Cl2 was added. The reaction mixture was then refluxed for 96 h. The 

reaction product was then precipitated out in ether and dissolved in 25 mL water with 

addition of HCl. Polymer was isolated by freeze-drying after extensive dialysis against 

distilled water acidified with HCl to pH 4.0 and a final dialysis against distilled water. The 

product was then freeze-dried to afford the final product as HCl salt of 143.3 mg DCC-

BEN (yield= 10%).  

 

5.2.3 Polymer degradation studies 

Degradation studies of DSS-BEN and DCC-BEN were carried out following 

published procedures [340]. Briefly, DSS-BEN or DCC-BEN (10 mg) was dissolved in 

900 µL of 0.1 M phosphate buffered D2O:acetone-d6 (3:2) and the solution was purged 

with argon for 10 minutes. DTT (15 mg, 0.097 mmol) was added to the solution of DSS-

BEN or DCC-BEN immediately before NMR acquisition and the solution was incubated 

at 25 °C. The extent of depolymerization was monitored using 1H NMR spectrum. 

Percentage of polymer degradation was quantified by the reduction of integrated 

methylene peaks next to carbamate at the N end in the polymer (3.35-3.55 ppm for 
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DSS-BEN; 3.23-3.50 ppm for DCC-BEN) relative to the solvent peak of D2O (4.8 ppm) 

in the sample. The degradation of polymers was plotted using curve fitting of nonlinear 

regression model with first-order kinetic using GraphPad Prism software. 

 

5.2.4 Cell culture  

Murine melanoma cell line B16F10 and human embryonic kidney cell line HEK 

293T cells were cultured in DMEM supplemented with 10% FBS. MDA-MB-231 human 

breast cancer cells were cultured in RPMI supplemented with 10% FBS. HepG2 cells 

were cultured in EMEM supplemented with 10% FBS. Human epithelial osteosarcoma 

U2OS cells were cultured in DMEM supplemented with 2 mM L-Glutamine, 10% FBS, 

1% Pen-Strep and 0.5 mg/ml G418. All cells were kept at 37 °C in incubator with 5% 

CO2. 

 

5.2.5 Polyamine analysis 

Cells were treated with BENSpm (2.5 µg/mL), DSS-BEN (5.7 µg/mL) or DCC-

BEN (5.7 µg/mL) for 24, 48, 72 h. Intracellular polyamines (SPM, SPD, PUT) and 

polyamine analog BENSpm were then extracted from cell pellets with 5% SSA, modified 

with dansyl, and analyzed by reverse phase HPLC as described previously [341]. 

Briefly, cell pellet was harvested and cells were counted after treatment. For every 107 

cells, 200 µL of 5% SSA was added. Cell suspension was then sonicated for 30 s, 

allowed to stand on ice for 60 min and mixed once at 30 min. Cell debris was then 

centrifuged for 5 min at 12,000 g. Fifty µL of the supernatant was transferred to a new 

1.7 mL centrifuge tube and mixed with 50 µL of internal standard (40 µM DAH stock 
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solution in 0.1 N HCl). Two hundred µL of saturated sodium carbonate and 200 µL of 

dansyl chloride (10 mg/mL in acetone) were then added. The reaction mixture was then 

vortexed for 10 s and incubated at 70 °C for 10 min and kept in dark. The samples were 

then allowed to cool to room temperature and 100 µL of freshly prepared proline 

solution (250 mg/mL) was added. The sample was then kept in dark for additional 10 

min and loaded onto a Bond-Elut C18 column (1 mL, with adapters, Agilent Technology). 

After loading, column was washed with two column volumes of 35% acetonitrile. 

Dansylated polyamine samples were then eluted with 100% acetonitrile. Fifty µL of 

samples were injected onto Eclipse Plus C18, 4.6 x 150 mm column (5 µm particle size, 

Agilent Technology, Santa Clara, CA) and eluted by a two-solvent gradient using 1260 

Infinity Quaternary LC System (Agilent Technology, Santa Clara, CA). Solvent A was 10 

mM phosphate buffer, pH 4.4. Solvent B was 100% acetonitrile. At 2 mL/min, the 

gradient began at 45% solvent A and progressed linearly to 80% solvent B over 14 min 

and increased to 90% solvent B at 15 min and the gradient was maintained until 20 min, 

then the gradient of solvent A decreased linearly to 45% till 26 min. Compounds were 

detected using 1260 Infinity Fluorescence Detector (Agilent Technology, Santa Clara, 

CA) with an excitation wavelength of 340 nm and an emission wavelength of 515 nm. 

The data were collected and analyzed using OpenLAB CDS Chemstation Edition 

software (Agilent Technology). BENSpm and polyamine analogue levels were then 

calculated based upon internal standard levels and external standard curves. The 

results for natural polyamines were expressed as amount of polyamine (ng) per ten 

million cells (ng/107 cells). The relative BENSpm release (%) was calculated as the 
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amount of BENSpm detected ([M]) in DSS-BEN treated cells divided by [M] in free 

BENSpm treated cells: [M]DSS-BEN/[M]BENSpm × 100%.  

 

5.2.6 EtBr exclusion assay 

The ability of DSS-BEN and DCC-BEN to condense gWiz-Luc plasmid DNA was 

determined by EtBr exclusion assay by measuring the changes in EtBr/DNA 

fluorescence. One mL DNA solution at a concentration of 20 µg/mL in 10 mM HEPES 

buffer (pH 7.4) was mixed with EtBr (1 µg/mL) and fluorescence was measured and set 

to 100% using an excitation wavelength of 540 nm and an emission wavelength of 590 

nm using QuantechTM Fluorometer from Thermo Scientific (Waltham, MA). 

Fluorescence readings were then taken following a stepwise addition of a polycation 

solution, and the condensation curve for each polycation was constructed. 

 

5.2.7 Gel retardation assay and release of DNA from polyplexes under reductive 

environment 

Twenty µL polyplexes of DSS-BEN and DCC-BEN at different w/w ratios with 20 

µg/mL gWiz-Luc DNA were loaded onto a 0.8% agarose gel containing 0.5 µg/mL EtBr 

and run for 60 min at 120 V in 0.5× Tris/Borate/EDTA (TBE) running buffer. For testing 

the disassembly of polyplexes in reductive environment, DSS-BEN and DCC-BEN 

polyplexes were prepared at w/w ratio of 8, and were incubated with different 

concentration of heparin -/+ GSH (20 mM) for 30 min before loaded onto the gel.  The 

gels were visualized under UV illumination on a KODAK Gel Logic 100 Imaging System. 
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5.2.8 Size and zeta potential of polyplexes 

Hydrodynamic diameter and zeta potential of DSS-BEN/DNA and DCC-

BEN/DNA polyplexes were determined by dynamic light scattering (DLS) using a 

ZEN3600 Zetasizer Nano-ZS Particle Size Analyzer (Malvern Instruments Ltd., 

Worcestershire, UK). Polyplexes were prepared at a desired weight-to-weight (w/w) 

ratio of 2, 4, 6, 8 by adding a pre-determined amount of polymer to the solution of 

plasmid DNA in 10 mM HEPES (pH 7.4) to achieve a final DNA concentration of 20 

µg/mL (200 µL). The polyplexes were incubated for 30 min at room temperature and 

then diluted to 1 mL for size and zeta potential measurement.  

 

5.2.9 Cytotoxicity 

Toxicity was evaluated by MTS assay. The cells were seeded in 96-well 

microplates at a density of 10,000 cells/well. After 24 h, culture medium was replaced 

by 200 µL of serial dilutions of DSS-BEN or DCC-BEN in serum-supplemented medium 

and the cells were incubated for 24 h. Then the solutions were aspirated and replaced 

by a mixture of 100 µL serum-free media and 20 µL of MTS reagent (CellTiter 96® 

AQueous Non-Radioactive Cell Proliferation Assay, Promega). After 1.5 h incubation, 

the absorbance was measured using SpectraMax® M5e Multi-Mode Microplate Reader 

(Molecular Devices, CA) at a wavelength of 490 nm. The relative cell viability (%) was 

calculated as [A]sample/[A]untreated × 100%. The IC50 were calculated as the polymer 

concentration that inhibits growth of 50% of cells relative to untreated cells. The IC50 

values were calculated using GraphPad Prism. 
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5.2.10 Determination of maximum tolerated dose (MTD) in mouse 

Animal experiment was performed under a protocol approved by the University of 

Nebraska Medical Center Institutional Animal Care and Use Committee. Fifteen-week-

old female BALB/c nude mice were administered by tail vein injection of DSS-BEN or 

DCC-BEN polyplexes (w/w 4) in 200 µL solution of 0.27 M mannitol in 5 mM HEPES at 

concentrations of 0.8, 1.6, 2.4 and 3.2 mg/kg body weight for the corresponding 

polymer. Mice were monitored for 3 h after injection for acute toxicity. MTD was 

considered the highest dose in which no mortality was observed. 

 

5.2.11 Transfection of DNA polyplexes 

All transfection experiments were conducted in 48-well plates following a 

previously published protocol [342]. Cells were seeded at a density of 50,000 cells/well 

for MDA-MB-231 cells and HEK 293T cells, 40,000 cells/well for B16F10 cells and 

20,000 cells/well for U2OS cells 24 h prior to transfection. On the day of transfection, 

cells were incubated with the polyplexes (DNA conc. 2.35 µg/mL) in 170 µL of media 

with or without 10% FBS. After 4 h incubation, polyplexes were completely removed and 

the cells were cultured in complete culture medium for 24 h prior to measuring 

luciferase expression. The medium was discarded and the cells were lysed in 100 µL of 

0.5x cell culture lysis reagent buffer (Promega, Madison, WI) for 30 min. To measure 

the luciferase content, 100 µL of 0.5 mM luciferin solution was automatically injected 

into each well of 20 µL of cell lysate and the luminescence was integrated over 10 s 

using GloMax 96 Microplate Luminometer (Promega, Madison, WI). Total cellular 

protein in the cell lysate was determined by the bicinchoninic acid protein assay using 
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calibration curve constructed with standard bovine serum albumin solutions (Pierce, 

Rockford, IL). Transfection activity was expressed as relative light units (RLU)/mg 

cellular protein ± SD (n=4). 

 

5.2.12 Combination of DSS-BEN and DCC-BEN with TRAIL protein 

MDA-MB-231 cells were seeded in 96-well plates at a density of 3,000 cells/well. 

After 24 h, culture medium was replaced by 200 µL of serial dilutions of BENSpm, DSS-

BEN, DCC-BEN, TRAIL protein or the combination of each reagent with TRAIL in 

serum-supplemented medium. Cells were further incubated for 120 h and medium was 

changed once with fresh medium containing the same concentration of agents at 48 h. 

Cell viability was then measured by MTS assay as described above. Quantification of 

synergistic effect was evaluated by CI value calculated using CompuSyn software 

(ComboSyn, Inc., Paramus, NJ). 

 

5.2.13 Combination of DSS-BEN and DCC-BEN with different siRNAs 

Reverse transfection method was used for siRNA knockdown. For each well of 

96-well plate, particles containing siRNA were prepared by mixing 10 µL siRNA solution 

in HBSS (conc. 200 nM, 2 pmol per well) and 10 µL DharmaFECT4 solution (0.1 µL 

DharmaFECT4 solution in 10 µL HBSS), the mixture was allowed to stand for 20 min at 

room temperature, and the total amount of 20 µL of siRNA complexes was added to 

each well. Eighty µL of U2OS cell suspension containing either fresh medium, 

BENSpm, DSS-BEN or DCC-BEN was then added to each well (50,000 cells/mL, 4,000 

cells/well). Final concentration of BENSpm, DSS-BEN, or DCC-BEN was 2.5 µg/mL, 5.7 



www.manaraa.com

133 

 

 

µg/mL, 5.7 µg/mL, respectively (the doses of DSS-BEN and DCC-BEN are equivalent to 

2.5 µg/mL BENSpm as determined by elemental analysis). The cells were further 

incubated for 72 h and cell viability was then measured using CellTiter-Blue® Cell 

Viability Assay (Promega, Madison, WI). Twenty µL of CellTiter-Blue reagent was added 

into each well and incubated for 1.5 h in the incubator before recording the fluorescent 

intensity (560Ex/590Em). The relative cell viability (%) was calculated as the relative 

fluorescence [F]sample/[F]untreated × 100%. Data were analyzed by Student’s t-test, and 

statistical significant difference was determined as p < 0.02. 

 

5.3 Results and Discussion 

 

In order to design a self-immolative prodrug/gene delivery vector with high 

content of BENSpm and intracellularly selective drug release mechanism, we designed 

a simple two-step reaction. Activation of DSOH with CDI was followed by polymerization 

with BENSpm via carbamate bond to form DSS-BEN polymer (Scheme 8). As the non-

degradable counterpart, control polymer DCC-BEN without the disulfide bond was also 

 

 
Scheme 8. Synthesis of DSS-BEN 
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synthesized for this study (Scheme 9). The synthesized DSS-BEN was expected to 

undergo intracellular reduction by reacting with intracellular reducing reagents such as 

GSH. The resulting thiolated intermediate is subject to intramolecular cyclization, which 

generates BENSpm and a small cyclic molecule 1,3-oxathiolan-2-one (Scheme 10).  

 

5.3.1 Synthesis and characterization of DSS-BEN and DCC-BEN 

DSS-BEN and non-degradable control DCC-BEN were synthesized using 1: 1 

ratio of BENSpm with activated DSOH or 1,6-hexanediol in dichloromethane (Scheme 8 

and Scheme 9). The success of the synthesis was confirmed by 1H-NMR (Figure 29) 

and elemental analysis (Table 6). The patterns of peak broadening in the NMR spectra 

for both DSS-BEN and DCC-BEN proved the formation of polymers [343]. From the 

NMR spectra of DSS-BEN, ratio between the integration of peak a to peak c and e 

equals 1: 2, which indicates the molar ratio between DSOH and BENSpm in the 

polymer is around 1: 1. This result was also confirmed by the elemental analysis (2 mol 

S in 1 mol DSOH, 4 mol N in 1 mol BENSpm), where the molar ratio between BENSpm 

and DSOH equals 1: 1.14. These results suggested that the structure of the polymer is 

mostly linear, however, due to the similar reactivity of the four secondary amines in 

 

 
Scheme 9. Synthesis of DCC-BEN 
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BENSpm, it is not possible to determine which two amines were conjugated with the 

DSOH based on our current detection methods. Similar result was also obtained with 

DCC-BEN. In the NMR spectra of DCC-BEN, ratio of peak a to the addition of peak e 

and peak f equals 1: 2.01. It can be calculated from the elemental analysis that the ratio 

between BENSpm and hexanediol is 1: 1.22 (6 mol C in 1 mol hexanediol, 4 mol N and 

13 mol C in 1 mol BENSpm), indicating the structure of the polymer is mostly linear, with 

most of the polymer molecules terminated with hexanediol. Moreover, both polymers 

contain equal amount of 44% BENSpm in the total weight (Table 6). 

 

 

Scheme 10. Intracellular release mechanism of BENSpm from DSS-BEN. 
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Figure 29. 1H-NMR and SEC spectra (small figures) of DSS-BEN (upper panel) and 
DCC-BEN (lower panel). 
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SEC (Figure 29) showed that DSS-BEN has the molecular weight around 3.8 

kDa, while the DCC-BEN has lower molecular weight around 2.8 kDa. The low 

molecular weight of the DCC-BEN partially explained the low yield (10%), as the 

polymer was purified by dialysis with the molecular weight cutoff of 3.5 kDa. The dn/dc 

value was determined experimentally as 0.1693 g/mL using a serial dilution of DSS-

BEN. It can be calculated from the molecular weight of both polymers that the number 

of repeating unit (n) in the polymers (as shown in the structure of DSS-BEN in Scheme 

8 and DCC-BEN in Scheme 9) equals 8 and 7 for DSS-BEN and DCC-BEN, 

respectively. The polymerizations for both DSS-BEN and DCC-BEN have been carried 

out at different temperatures (60 °C in chloroform and 45 °C in dichloromethane) and 

using different reaction times (24, 48, 72, 96 h). However, no significant increase in the 

molecular weight was observed under either elevated temperature or prolonged 

reaction time. 
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The synthesized DSS-BEN was expected to undergo intracellular reduction by 

reacting with intracellular reducing reagents such as GSH (Scheme 10). In order to 

verify the proposed degradation mechanism of DSS-BEN, we investigated the 

degradation kinetic of DSS-BEN in comparison with non-reducible DCC-BEN by 1H 

NMR spectroscopy. With the presence of reducing agent DTT, multiple changes of the 

chemical shift were observed from the NMR spectrum for DSS-BEN after 16 h 

 

Figure 30. 1H NMR spectra of DSS-BEN (a) immediately after DTT addition in 0.1 M 
pH 7.4 phosphate buffered D2O:acetone (3:2) at 25 °C; (b) after 16 h under the same 
conditions; (c) degradation kinetics of DSS-BEN and DCC-BEN as calculated from 
the 1H NMR.  
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incubation (Figure 30a and 30b). Reduction of peak c and peak e in Figure 30a 

compared with the corresponding peaks in Figure 30b indicated the cleavage of 

carbamate bond in the polymer backbone. Peak a and peak b in Figure 30b 

represented the methylene peaks of the 1,3-oxathiolan-2-one cyclic product in the 

reaction mixture. These results proved the proposed mechanism of intramolecular 

cyclization of the self-immolate linkage. Oppositely, no difference in the spectrum was 

observed for DCC-BEN under the same condition (data not shown), therefore verified 

the need of designing self-immolative linker to facilitate the carbamate cleavage in the 

polymer backbone. The degree of polymer degradation was calculated as the 

percentage of reduction in the integration of peak a and e (Figure 30a) relative to the 

peak integration at time 0 (immediately after DTT addition). As shown in Figure 30c, 

curve fitting of the degradation result demonstrated that DSS-BEN depolymerization 

followed first-order kinetic, with a rate constant of 3.5 × 10-3 min-1 and a corresponding 

half-life of 198 min. This result is in well agreement with former reports that the 

degradation of several self-immolative polymers containing similar cyclizing spacers 

followed the kinetics between zero and first order [340, 344]. Co-incubation of DCC-

BEN with DTT resulted in no change in the NMR spectrum, and the calculated degree 

of depolymerization was lower than 0.7% within 48 h. In all, these results demonstrated 

the success of designing DSS-BEN as an effective self-immolative BENSpm prodrug. 
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5.3.2 Prodrug function of DSS-BEN and DCC-BEN in various cell lines 

The prodrug function of DSS-BEN and DCC-BEN was evaluated using HPLC to 

quantitatively determine the intracellular levels of BENSpm and their effect of depleting 

natural polyamines. We first verified that BENSpm could be released from the DSS-

BEN. As shown in Figure 31, BENSpm was detected in all cell lines tested after the 

treatment with DSS-BEN, the highest amount of BENSpm release (67.5%) was 

observed in U2OS cells followed 72 h treatment with DSS-BEN. In comparison, in all 

untreated groups and DCC-BEN treated groups, no detectable amount of BENSpm was 

observed, and thus was not depicted in the figure. This result confirmed the success of 

degradable design of DSS-BEN, and the cell line-dependence of BENSpm release may 

be caused by the difference in intracellular redox potential of the different cell lines.  

Table 6. Elemental analysis and calculated BENSpm content in DSS-BEN and DCC-
BEN  
 

Weight % C H N S Cl BENSpm 

DSS-BEN 44.1 7.9 10.2 13.3 8.5 44.0 

DCC-BEN 49.7 9.3 10.1 NA 11.3 43.9 
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In order to test the drug effect of DSS-BEN and DCC-BEN in comparison with 

BENSpm, we further evaluated the intracellular polyamine levels. As shown in Figure 

32a, BENSpm treatment efficiently depleted all the natural polyamines in B16F10 cells 

when treated for at least 24 h. Treatment with DSS-BEN resulted in less polyamine 

depletion because less than 15% of BENSpm was released from DSS-BEN in B16F10 

cells. It is reasonable to conclude that limited BENSpm release and insufficient time 

were the major causes for the compromised drug effect. In contrast, significant down-

regulation of polyamines was observed in U2OS cells after 72 h treatment with DSS-

BEN (Figure 32b), suggesting that BENSpm release from DSS-BEN is strongly cell line-

dependent. DCC-BEN failed to down-regulate the polyamines in both B16F10 cells and 

U2OS cells. Although in MDA-MB-231 cells, DCC-BEN showed moderate down-

regulation of polyamines, it was considered less relevant with the BENSpm drug effect, 

as no BENSpm release was detected 72 h after DCC-BEN treatment. In all, these 

 

Figure 31. BENSpm release after 72 h treatment of DSS-BEN in different cell lines 

determined by HPLC analysis.  
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results demonstrated that DSS-BEN could release BENSpm in the intracellular 

environment and exhibit the drug effect for polyamine depletion. 

 

 

Figure 32. Polyamine concentration in different cell lines determined by 
HPLC analysis. (a) Time dependence of polyamine production in B16F10 
cells after treatment with BENSpm, DSS-BEN or DCC-BEN; (b) Cell line 
dependence of polyamine production in B16F10, MDA-MB-231 and U2OS 
cells after 72 h treatment.  
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5.3.3 DNA condensation and polyplex characterization 

In order to test the function of DSS-BEN and DCC-BEN as gene delivery vectors, 

we first investigated the ability of DSS-BEN and DCC-BEN to condense DNA using EtBr 

exclusion assay (Figure 33a). Results showed that the parent BENSpm could not 

condense DNA, indicated by the decrease of fluorescence intensity by less than 30%. In 

contrast, DSS-BEN could efficiently condense DNA at w/w ratio > 4, however, DCC-

BEN only showed partial DNA condensation ability with only 50% decrease in 

fluorescence intensity at w/w 10. Gel retardation assay showed that both DSS-BEN and 

DCC-BEN could confine DNA to the start of the gel at w/w ratio higher than 0.5 and 1, 

respectively (Figure 33b). However, fluorescence was observed in the wells even at the 

highest w/w ratio (w/w 16) used. Because the fluorescence emission is a result of 

intercalation of DNA by EtBr, it can be concluded that both DSS-BEN and DCC-BEN 

formed lose polyplexes structure with DNA. Therefore the partially condensed DNA 

molecules could remain active to interact with EtBr.   

The DSS-BEN/DNA and DCC-BEN/DNA polyplexes were further analyzed for 

the size and zeta potential (Figure 33c and 33d). DSS-BEN efficiently condensed DNA 

into positively charged nanoparticles, with small particle sizes ~70-100 nm for all the 

tested w/w ratios. However, DCC-BEN could not condense DNA at w/w 2 and the 

particle sizes were above 100 nm at higher w/w ratios, with zeta potential generally 

smaller than DSS-BEN polyplexes. Despite the structural similarity between DSS-BEN 

and DCC-BEN, possible explanation for the discrepancy in DNA condensation ability is 

that the flexible disulfide-disulfide exchange between DSS-BEN polymer chains may 

facilitate encapsulation of DNA molecule as well as stabilization of the polyplexes [345]. 
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The effect of disulfide reduction mediated by GSH on the polyplexes against 

polyelectrolyte exchange with heparin was evaluated by agarose gel electrophoresis 

(Figure 34). We hypothesized that disulfide reduction of DSS-BEN would not only 

facilitate the BENSpm release from the polymer, but also result in the intracellular 

release of DNA from the polyplexes. In the absence of a reducing agent, both the DSS-

BEN and DCC-BEN polyplexes showed the first sign of DNA release at a heparin 

concentration of 120 µg/mL. However, in the presence of 20 mM GSH that mimic the 

redox status in the cell nuclei [346], DNA release was observed even without the 

involvement of heparin. On the other hand, DCC-BEN polyplexes showed only slight 

 

Figure 33. Physiochemical characterization of DNA polyplexes of DSS-BEN and 
DCC-BEN polyplexes. (a) EtBr exclusion assay in 10 mM HEPES (pH 7.4); (b) gel 
retardation assay; (c) hydrodynamic particle size and (d) zeta potential of the 
polyplexes at different w/w ratios.  
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difference in DNA release with the presence of GSH. These results confirmed our 

hypothesis that disulfide-containing polymer DSS-BEN possesses the advantage of 

redox-responsive DNA release in the intracellular environment. Therefore, DSS-BEN is 

expected to have better transfection capability over DCC-BEN. 

 

5.3.4 Cytotoxicity 

Toxicity associated with the use of polycations remains a major hindrance for 

polycation-based gene delivery systems. One of the most effective strategies to reduce 

the vector toxicity is to incorporate degradable moiety into the polymer backbone [347-

350]. Because of the bioreducible nature of DSS-BEN, we expected it to have lower 

toxicity compared with the non-degradable control DCC-BEN. As shown in Figure 35, 

IC50 values of DSS-BEN were generally 1.5-2 fold higher than DCC-BEN, and 3-4 fold 

higher than PEI. Interestingly, DSS-BEN showed selective toxicity in MDA-MB-231, with 

the IC50 comparable to that of DCC-BEN and PEI, whereas no cell line dependence was 

 

Figure 34. DNA release from DSS-BEN (upper panel) and DCC-BEN (lower panel) 
polyplexes after incubation with heparin -/+ GSH (20 mM). All polyplexes were 
prepared at w/w ratio 8. 
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observed for DCC-BEN (IC50 12-20 µg/mL) and PEI (IC50 6-12 µg/mL). We then also 

determined the MTD of DSS-BEN and DCC-BEN in BALB/c nude mice after i.v. 

injection. The determined MTD was 1.6 mg/kg body weight for DSS-BEN and 0.8 mg/kg 

body weight for DCC-BEN. MTD values of both BENSpm polymers was lower than the 

reported MTD of PEI [351]. The fact that PEI was more toxic in vitro, while less toxic in 

vivo suggests that other factors play a role in in vivo toxicity that are not captured in the 

simple in vitro assays.  

 
5.3.5 Transfection 

Luciferase transfection assay was used to assess the capability of DSS-BEN and 

DCC-BEN as gene delivery vectors in various cell lines. Cells were transfected with 

DSS-BEN or DCC-BEN polyplexes prepared at different w/w ratios in the presence or 

absence of serum (Figure 36). DSS-BEN polyplexes showed comparable transfection 

with PEI in all tested cell lines. Interestingly, DSS-BEN polyplexes showed low 

 

Figure 35. IC50 values of DSS-BEN, DCC-BEN and PEI in various cell lines. Cell 
viability was measured by MTS assay after 24 h treatment. 
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sensitivity to w/w ratio and the presence of serum, especially in B16F10 and HEK 293T 

cells. In contrast, transfection of DCC-BEN polyplexes showed strong dependence on 

w/w ratio. The transfection efficiency of DCC-BEN was consistently lower than that of 

DSS-BEN polyplexes in all cell lines tested. Compared with DCC-BEN, higher 

transfection efficiency of DSS-BEN can be explained by the redox-responsive nature of 

the polymer, which can reduce the vector cytotoxicity and facilitate intracellular DNA 

release. This result verified the success of designing DSS-BEN as an efficient gene 

delivery vector. 

 

5.3.6 Combination of DSS-BEN with nucleic acids and proteins 

 

Figure 36. Transfection activity of DSS-BEN and DCC-BEN polyplexes in different 
cell lines. Results are shown as mean relative light unit (RLU)/mg protein ± SD (n=4).  
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BENSpm was reported to act synergistically with different therapeutic agents 

such as 5-FU, PTX, histone deacetylase inhibitor MS-275 and recombinant proteins 

TNF or TRAIL [199, 265, 352, 353]. In order to utilize the synergistic effect of BENSpm 

in DSS-BEN, it is important to evaluate the effectiveness of DSS-BEN in combination 

with different therapeutic agents, including siRNA or proteins.  

 

The synergistic effect of DSS-BEN and TRAIL combination was determined in 

MDA-MB-231 cells and compared with BENSpm and DCC-BEN. The cells were treated 

 

CI value 

TRAIL (ng/mL) BENSpm + TRAIL 

(100: 1) 

DSS-BEN + 

TRAIL (100:1) 

DCC-BEN + 

TRAIL (50:1) 

10 0.31 1.10 1.82 

20 0.27 0.90 0.95 

30 0.26 0.68 0.73 

40 0.29 0.57 0.74 

50 0.25 0.41 0.84 

 

Figure 37. Combination treatment of (a) BENSpm; (b) DSS-BEN and (c) DCC-BEN 
with TRAIL in MDA-MB-231 cells. Dose axis of DSS-BEN and DCC-BEN was 
normalized to corresponding BENSpm content, results were shown as relative cell 
viability compared with non-treated cells ± SD (n=3). 
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with DSS-BEN, DCC-BEN, BENSpm or TRAIL protein alone, or in the combination with 

TRAIL at fixed weight ratios (BENSpm: TRAIL 100:1; DSS-BEN: TRAIL 100:1 and 

DCC-BEN: TRAIL 50:1) for 120 h (Figure 37). CI value analysis showed that for all the 

doses tested, BENSpm showed strongest synergistic effect with TRAIL (CI < 0.32). 

DSS-BEN also showed synergism at high doses (CI = 0.41-0.68), while additive effect 

was observed at low doses (CI = 0.9-1.10). Compromised synergism may be owing to 

the less amount of BENSpm presented in DSS-BEN (44% weight loading) in 

combination with TRAIL, compared with the BENSpm free drug and TRAIL combination. 

Nevertheless, the results provided evidence of the prodrug functionality of DSS-BEN, 

which could maintain the enhancing potential of BENSpm. In contrast, DCC-BEN only 

showed slight synergism with TRAIL at high doses, as indicated by the CI values higher 

than 0.73, and additive effect or antagonism at low doses tested (CI = 0.95-1.82).   

 

 

Figure 38. Combination of BENSpm, DSS-BEN and DCC-BEN with different siRNAs 
in U2OS cells for 72 h. Result are shown as mean cell viability ± SD (n=3). *p  <  0.02 
indicates significant difference of cell viability in comparison with the (-) BENSpm 
groups. 
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Effect of DSS-BEN in combination with a panel of siRNAs was also investigated 

(Figure 38). U2OS cell line was used for the combination study because of the 

sensitivity to various siRNAs. A panel of siRNAs was chosen based on documented 

effectiveness of the target in cancer treatment, either alone or in combination with 

different therapeutic agents [354-364]. Doses of BENSpm, DSS-BEN or DCC-BEN used 

contained the equivalent amount of BENSpm (2.5 µg/mL). The results showed that 

BENSpm achieved the strongest cell growth inhibition (37%). DSS-BEN treatment 

showed compromised growth inhibition to U2OS cells (15%). It is possible that longer 

time is needed for efficient BENSpm release from DSS-BEN in order to take the drug 

action. As predicted, DCC-BEN alone at the equivalent BENSpm dose did not show any 

cell growth inhibition. This result supports our hypothesis that efficient BENSpm release 

is important for the drug function. When the cells were treated with 20 nM of different 

siRNAs, the data demonstrated that PLK-1 knockdown was lethal to U2OS cells (less 

than 10% viable cells detected). Significant cell killing could also be observed in cells 

treated with siRNA against Bcl-2, sHH, Akt2, and survivin. Combination of these siRNAs 

with BENSpm, DSS-BEN and DCC-BEN did not lead to any significant enhancement of 

siRNA activity. In contrast, the activity of siRNAs against PARP and Hif-1α was 

enhanced by the combination with BENSpm and DSS-BEN by almost 20%. 

Combination of the same siRNA treatments with DCC-BEN showed no additional 

induction of cell killing. To summarize, results from the combination experiments proved 

that DSS-BEN could well-maintain the synergistic potential of BENSpm.     
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5.4 Conclusions 

We have successfully developed polymeric prodrug of anticancer drug BENSpm 

and confirmed its dual functionality as a prodrug and a gene delivery vector. Presence 

of free BENSpm in cells treated with DSS-BEN confirmed the success of our self-

immolative linker strategy. We have also demonstrated that DSS-BEN can act 

synergistically with several therapeutic agents, making it a promising delivery platform 

for combination therapy in cancer by co-delivering a variety of therapeutic agents. 

Moreover, this kind of self-immolative linker can also be incorporated into prodrug 

design for a growing number of other similar drugs that possess cationic amines, such 

as difluoromethylornithine or AMD3100, and thus may be applied to other diseases: 

such as Barrett's esophagus and myelokathexis [365-367], for which polyamine drugs 

are promising therapeutics. In all, DSS-BEN is a promising dual delivery vector, and 

development of this kind of dual delivery platform warrants further investigation.  
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Combination drug and gene therapy shows promise in cancer treatment. 

However, the success of such strategy requires careful selection of the therapeutic 

agents, as well as development of efficient delivery vectors. BENSpm (N1, N11-

bisethylnorspermine), a polyamine analogue targeting the intracellular polyamine 

pathway, draws our special attention because of the following reasons: (1) polyamine 

pathway is frequently dysregulated in cancer; (2) BENSpm exhibits multiple functions to 

interfere with the polyamine pathway, such as to up-regulate polyamine metabolism 

enzymes and down-regulate polyamine biosynthesis enzymes. Therefore BENSpm 

depletes all natural polyamines and leads to apoptosis and cell growth inhibition in a 

wide range of cancers; (3) preclinical studies proved that BENSpm can act 

synergistically with various chemotherapy agents, making it a promising candidate in 
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combination therapy; (4) multiple positive charges in BENSpm enable it as a suitable 

building block for cationic polymers, which can be further applied to gene delivery.  

In this dissertation, our goal was to design dual-function delivery vector based on 

BENSpm that can function as a gene delivery vector and, after intracellular degradation, 

as an active anticancer agent targeting dysregulated polyamine metabolism. We first 

demonstrated strong synergism between BENSpm and a potential therapeutic gene 

product TRAIL. Strong synergism was obtained in both estrogen-dependent MCF-7 

breast cancer cells and triple-negative MDA-MB-231 breast cancer cells. Significant 

dose reduction of TRAIL in combination with BENSpm in MDA-MB-231 cells, together 

with the fact that BENSpm rendered MCF-7 cells more sensitive to TRAIL treatment 

verified our rationale of designing BENSpm-based delivery platform. This was expected 

to be beneficial for overcoming drug resistance in chemotherapy, as well as boosting 

the therapeutic effect of therapeutic genes. 

We first designed a lipid-based BENSpm dual vector (Lipo-SS-BEN) capable of 

intracellular release of BENSpm using thiolytically sensitive dithiobenzyl carbamate 

linker. Similar activity on SSAT enzyme induction by Lipo-SS-BEN compared with 

BENSpm free drug verified the success of this prodrug design. Biodegradability of Lipo-

SS-BEN contributed to decreased toxicity compared with nondegradable control 

LipoBEN. However, decreased enhancement of TRAIL activity was observed for Lipo-

SS-BEN when compared with BENSpm, indicating that the lipid-related toxicity 

diminished the synergism. In addition, compared with LipoBEN and DOTAP, decreased 

transfection efficiency of Lipo-SS-BEN demonstrated instability of Lipo-SS-BEN in 

extracellular environment.  
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In order to design a dual delivery vector with reduced vector toxicity and 

improved linker stability, we employed dendritic polyglycerol (PG) as a safe carrier 

backbone, onto which BENSpm was conjugated through carbamate linkage (PG-BEN). 

Polymers with norspermine (PG-Nor) shell and amine-terminated PG (PG-NH2) were 

synthesized as controls. The BENSpm dual vector PG-BEN demonstrated superior 

gene delivery function, and showed decreased toxicity compared with the control 

polymers. However, compared with BENSpm, which depleted all natural polyamines, 

PG-BEN only down-regulated intracellular putrescine levels. In addition, no free 

BENSpm was detected in PG-BEN treated cells. These results suggested that in order 

to take full advantage of BENSpm anticancer activity, alternative linker chemistry needs 

to be further explored.  

We then incorporated bis(2-hydroxyethyl) disulfide as a self-immolative linker to 

synthesize polymer prodrugs of BENSpm (DSS-BEN). The proposed mechanism of 

BENSpm release from DSS-BEN contains two steps: disulfide bond is first cleaved in 

the reducing intracellular space, then the intermediate further undergoes slow 

intramolecular cyclization to release free BENSpm. Cell line-dependent BENSpm 

release after DSS-BEN treatment was observed using HPLC analysis, demonstrating 

the success of our linker strategy. DSS-BEN showed comparable transfection efficiency 

as polyethylenimine and showed decreased toxicity in several cell lines compared with 

the nondegradable control DCC-BEN. We further demonstrated that DSS-BEN could 

act synergistically with several therapeutic agents, making it a promising delivery 

platform for combination therapy in cancer. In all, we have successfully developed a 

dual delivery vector based on BENSpm, which fulfills its function as a gene delivery 
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vector as well as a prodrug of BENSpm, and possesses synergistic potential to 

augment the effect of the co-delivered agents.  

 



www.manaraa.com

206 

 

 

AUTOBIOGRAPHICAL STATEMENT 

Education 
2005-2009 B.Sc. in Pharmacy, China Pharmaceutical University, Nanjing, China 

2009-pres. Ph.D. Pharmaceutical Sciences; Wayne State University, Detroit, MI 

 
Publications 
1. Li, J.; Zhu, Y.; Hazeldine, S. T.; Firestine, S. M.; Oupicky, D., Cyclam-based polymeric 

copper chelators for gene delivery and potential PET imaging. Biomacromolecules 2012, 13 
(10), 3220-3227. 

2. Li, J.; Zhu, Y.; Hazeldine, S. T.; Li, C.; Oupicky, D., Dual-function CXCR4 antagonist 
polyplexes to deliver gene therapy and inhibit cancer cell invasion. Angew Chem Int Ed Engl 
2012, 51 (35), 8740-8743. 

3. Dong, Y. M.; Zhu, Y.; Li, J.; Zhou, Q. H.; Wu, C.; Oupicky, D., Synthesis of 
bisethylnorspermine lipid prodrug as gene delivery vector targeting polyamine metabolism in 
breast cancer. Mol. Pharm. 2012, 9 (6), 1654-1664. 

4. Li, J.; Wang, Y.; Zhu, Y.; Oupicky, D., Recent advances in delivery of drug-nucleic acid 
combinations for cancer treatment. J Control Release 2013. 

5. Wu, C.; Li, J.; Zhu, Y.; Chen, J.; Oupicky, D., Opposing influence of intracellular and 
membrane thiols on the toxicity of reducible polycations. Biomaterials 2013, 34 (34), 8843-
8850. 

6. Zhu, Y.; Li, J.; Oupicky, D., Intracellular delivery considerations for RNAi therapeutics. “RNA 
Interference from Biology to Therapeutics”, K. Howard, Ed., 2013, pp 79-95 

7. Zhu, Y.; Hazeldine, S. T.; Li, J.; Oupicky, D., Dendritic polyglycerol with polyamine shell as a 
potential macromolecular prodrug and gene delivery vector. Submitted to Eur J Pharm Sci. 

8. Zhu, Y.; Hazeldine, S. T.; Li, J.; Oupicky, D., Self-immolative linker based BENSpm prodrug 
as dual drug/gene delivery system. In preparation. 

9. Li, J.; Zhu, Y.; Lepadatu, A. M.; Wang, Y.; Ciobanu, M.; Asaftei, S.; Oupicky, D., Viologen-
based dendrimers function dually as CXCR4 antagonists and gene delivery vectors. 
Submitted to Bioconjugate Chem. 

10. Zhu, Y.; Li, J.; Wang, Y.; Manickam, D.S.; You, Y. Z.; Oupicky, D., Redox-responsive 
polymer-based gene delivery systems. “Gene and Cell Therapy: Therapeutic Mechanisms 
and Strategies”, Templeton N. S., 4th Ed., Submitted. 

 
Patents 
1. Oupicky, D. and Zhu, Y. (co-inventor), “Dual function biodegradable polycations synthesized 

from polyamine analogs for combination drug-RNAi, drug-gene, and drug-protein therapies.” 
Invention disclosure (13-1186) filed 7/29/2013  

 
Awards 
1. First place at NanoDDS’11 Poster Award and Oral Presentation, Nanomedicine and 

drug delivery symposium, Salt Lake City, UT, 2011 
2. Outstanding student poster award, 8th Annual Research Forum, Eugene Applebaum 

College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 2011 
3. Frank O. Taylor Scholarship, Wayne State University, Detroit, MI, 2012 
4. Summer Dissertation Fellowship, Wayne State University, Detroit, MI, 2013 


	Wayne State University
	1-1-2014
	Dual Delivery Systems Based On Polyamine Analog Benspm As Prodrug And Gene Delivery Vectors
	Yu Zhu
	Recommended Citation


	Microsoft Word - dissertation Yu Zhu_Complete draft 02 copy.docx

